The main goal of this session is to bring together scientists, scholars, and engineers focused on researching, teaching, and applying innovative measurement techniques and monitoring approaches essential for analyzing sedimentary and hydro-morphological processes in diverse open water environments such as rivers, lakes, reservoirs, estuaries, and coastal areas.
This session emphasizes evaluating and quantifying sediment transport phenomena - such as bed load and suspended load, bedform migration, channel migration, bed armoring, and colmation - alongside examining sediment transport modes, flocculation, settling, and re-suspension dynamics.
We invite contributions focusing on single and combined measurement techniques, post-processing methods, and innovative monitoring approaches for field and laboratory settings. Additionally, recent insights on sediment budgets and sedimentary and morphodynamic processes, evaluated across temporal and spatial scales in open water environments, are highly encouraged.
Contributions may include, but are not limited to:
- Suspended sediment transport measurements in open water environments using optical, acoustic, traditional sampling, or other methods.
- Bed load transport measurements via bed load samplers, sediment traps, tracers, or acoustic and optical techniques.
- Sediment characterization through mechanical samplers or freeze-core techniques.
- Innovative measurement approaches for validating and calibrating numerical models.
- Critical bed shear stress measurements of cohesive sediments using devices like benthic flumes.
- Monitoring morphological changes such as lake and reservoir sedimentation, bank erosion, bed armoring, meandering, and river bend evolution.
- Measurement networks and multi-point datasets.
- Large and small-scale monitoring concepts, including case studies.
- In-situ or laboratory calibration of measurement data through traditional methods or novel approaches such as machine learning.
Hydro-morphological processes in open water environments – measurement and monitoring techniques