HS9.5 | Channel control structures and soil conservation techniques in catchment planning and management
EDI
Channel control structures and soil conservation techniques in catchment planning and management
Co-organized by GM4/SSS2
Convener: Sara CucchiaroECSECS | Co-conveners: Johannes Huebl, Zhiqiang Zhang, Georg NaglECSECS, Vesna Zupanc

To control catchment hydrology and morphology, and regulate water resources and forest and agricultural activities, channel control structures (such as check dams) and soil conservation techniques (e.g., terracing, mulching, afforestation) have been strategically used for several decades. Although research has underscored their vital role, several scientific aspects remain unexplored: i) suitable planning and design of restoration actions; ii) prediction of degradation and functioning over time; iii) quantification of the effectiveness of actions as a function of their desired purposes; iv) assessment of their effectiveness after extreme hydrological events. The lack of long-term monitoring studies makes this scientific objective complicated. However, remote sensing (RS) opens new horizons to monitor the evolution of catchment morphology and analyse past and current phenomena by exploiting multi-temporal surveys at different scales and open-source big data.
This session offers a platform for collaboration and discussion among soil scientists, hydrologists, geomorphologists, foresters and stakeholders, facilitating a dialogue on critical issues about planning, design, and management of torrent control works and soil conservation techniques at the catchment scale. Research about the following topics is welcome: i) innovative protocols and guidelines for planning and design; ii) emerging techniques for multi-temporal or real-time monitoring of effects exploiting RS; iii) standards for comprehensive analysis of structural and functioning conditions as well as impacts on natural dynamics of torrents and their catchments; iv) identification of new challenges (i.e., soil-bioengineering techniques and integration of living vegetation in check dam systems).
Early career scientists are encouraged to contribute to the session with original and advanced studies.