TS1.2 | Stressed to Impress: Advances in quantifying stress in the viscous lithosphere
Stressed to Impress: Advances in quantifying stress in the viscous lithosphere
Co-organized by GD6
Convener: Alissa Kotowski | Co-conveners: Caroline Seyler, Rellie Goddard, Diede Hein, John Platt

Understanding stress distribution and evolution in the Earth's lithosphere is fundamental to unraveling the dynamics of plate boundaries, the development of shear zones, and time-dependent processes such as creep transients. This session aims to bring together research focused on quantifying stress in the viscous crust and mantle using a variety of techniques, including naturally deformed exhumed rock samples, paleopiezometry, in-situ deformation experiments, wattmeters, and quantitative numerical models.
We are particularly interested in studies that explore how stress evolves at plate boundaries, influences their viscosity, and drives large-scale geodynamic processes. Contributions that investigate the role of time-dependent processes, such as creep transients, in stress evolution are highly encouraged, as are those that delve into the boundary conditions governing shear zone development and stress distribution. Additionally, we seek research that addresses the origins and implications of stress heterogeneity in rocks, from the sub-grain scale to plate boundaries, and its preservation potential in the rock record.
This session will provide a platform for discussing the integration of different methodologies to better understand the complex behavior of Earth's lithosphere. We welcome innovative approaches to stress quantification and encourage submissions that bridge scales and techniques to offer new insights into the stress dynamics of the viscous crust and mantle.

Understanding stress distribution and evolution in the Earth's lithosphere is fundamental to unraveling the dynamics of plate boundaries, the development of shear zones, and time-dependent processes such as creep transients. This session aims to bring together research focused on quantifying stress in the viscous crust and mantle using a variety of techniques, including naturally deformed exhumed rock samples, paleopiezometry, in-situ deformation experiments, wattmeters, and quantitative numerical models.
We are particularly interested in studies that explore how stress evolves at plate boundaries, influences their viscosity, and drives large-scale geodynamic processes. Contributions that investigate the role of time-dependent processes, such as creep transients, in stress evolution are highly encouraged, as are those that delve into the boundary conditions governing shear zone development and stress distribution. Additionally, we seek research that addresses the origins and implications of stress heterogeneity in rocks, from the sub-grain scale to plate boundaries, and its preservation potential in the rock record.
This session will provide a platform for discussing the integration of different methodologies to better understand the complex behavior of Earth's lithosphere. We welcome innovative approaches to stress quantification and encourage submissions that bridge scales and techniques to offer new insights into the stress dynamics of the viscous crust and mantle.