Climate change is strongly impacting alpine regions, which are warming at rates twice as fast as the global average. Changes in precipitation patterns—such as increased rainfall intensity and decreased snowfall—are significantly affecting hydrological regimes and erosion and weathering processes. Shrinking glaciers and thawing permafrost, both driven by the rapid warming, are reshaping alpine landscapes by reducing ice cover, temporarily increasing meltwater runoff and destabilising mountain slopes. Extreme weather events and increased river runoff cause a higher frequency of debris flows, landslides, rockfalls, floods and cascading events. Understanding how sediment dynamics respond to rapid warming is key for predicting the evolution of alpine regions in the coming decades and is essential to adaptation and risk management.
This session focuses on how sediment dynamics in alpine catchments have responded to climate change over the past decades and how they are likely to evolve in the future. We would like to discuss sediment dynamics on various spatial scales, from hillslopes to catchments, addressing changes along alpine sediment cascades from source to sink. This includes quantitative analysis of sediment transport and yield influenced by climate warming on sediment supply, transport capacity and connectivity. We welcome contributions applying a broad range of methods ranging from modeling to experimental to field-based approaches.
This session addresses time periods including both historical climate change, as well as predictions for future climatic conditions, with timescales ranging from centuries to decades to short-duration events, such as intense precipitation events. We also invite contributions linking quantitative geomorphological knowledge to impacts and implications for climate change adaptation and sediment management in alpine environments.
Sediment dynamics under a changing climate in alpine environments
Convener:
Anne-Laure ArgentinECSECS
|
Co-conveners:
Leona RepnikECSECS,
Felix PitscheiderECSECS,
Sara SaviECSECS,
Jan-Christoph Otto