GM8.5 | Coastal morphodynamics: nearshore, beach and dunes
EDI
Coastal morphodynamics: nearshore, beach and dunes
Convener: Irene Delgado-Fernandez | Co-conveners: Emilia Guisado-Pintado, Susana Costas, Carlos Loureiro, Dominique Townsend

Analysing the morphodynamics of sandy coasts, from the nearshore to inland dune systems, is essential for understanding their behaviour over both short and long timescales. Given the vast spatial and temporal ranges involved, studying the resulting landforms is both challenging and intricate. However, methodological advancements in coastal sciences continue pushing the boundaries of coastal research and allows sandy coastlines to be examined across various time and space scales. This approach helps link processes with landform responses.

Coastal dunes act as a physical barrier against flooding during high-energy storms, while beaches and nearshore areas mitigate storm impacts through dynamic interactions involving sediment transfers and rapid morphological changes. Investigating the complex interactions between these three interconnected systems is critical for understanding and managing coastal environments.

This session invites contributions from coastal scientists focused on measuring and modelling physical processes and responses within these three sub-units across different spatial and temporal scales. It will showcase the latest scientific advancements in our understanding of coastal environments and promote knowledge exchange between the submerged zone (e.g., nearshore waves, currents, and sediment transport) and sub-aerial zones (e.g., beach and aeolian dune dynamics).

The session is sponsored by the Commission on Coastal Systems (CCS) of the International Geographical Union (www.igu-ccs.org) and the IGCP Project 725 ‘Forecasting Coastal Change’ (https://www.sfu.ca/igcp-725.html). A solicited speaker will be announced shortly.

Analysing the morphodynamics of sandy coasts, from the nearshore to inland dune systems, is essential for understanding their behaviour over both short and long timescales. Given the vast spatial and temporal ranges involved, studying the resulting landforms is both challenging and intricate. However, methodological advancements in coastal sciences continue pushing the boundaries of coastal research and allows sandy coastlines to be examined across various time and space scales. This approach helps link processes with landform responses.

Coastal dunes act as a physical barrier against flooding during high-energy storms, while beaches and nearshore areas mitigate storm impacts through dynamic interactions involving sediment transfers and rapid morphological changes. Investigating the complex interactions between these three interconnected systems is critical for understanding and managing coastal environments.

This session invites contributions from coastal scientists focused on measuring and modelling physical processes and responses within these three sub-units across different spatial and temporal scales. It will showcase the latest scientific advancements in our understanding of coastal environments and promote knowledge exchange between the submerged zone (e.g., nearshore waves, currents, and sediment transport) and sub-aerial zones (e.g., beach and aeolian dune dynamics).

The session is sponsored by the Commission on Coastal Systems (CCS) of the International Geographical Union (www.igu-ccs.org) and the IGCP Project 725 ‘Forecasting Coastal Change’ (https://www.sfu.ca/igcp-725.html). A solicited speaker will be announced shortly.