Fluid venting as a submarine geological process controlling seafloor morphology and biology
Convener:
Daniele Spatola
|
Co-conveners:
Marzia Rovere,
George Papatheodorou,
Ariadna CanariECSECS,
Giulia Matilde FerranteECSECS
Two main types of fluid vents are commonly distinguished: (i) “cold seeps,” which are characterized by low-temperature fluid emissions, and (ii) hydrothermal vents, where fluids emerge at temperatures between 200-400°C. In submarine settings, marine geophysical data of different bandwidths can be used to identify fluid-related features on the seafloor and the presence of gas in the water column, which appears as acoustic flares, and below the seafloor, as acoustic anomalies. These anomalies include focused or diffused acoustic turbidity and blanking, bright spots, high-amplitude reflections, chimney or pipe structures, and bottom simulating reflectors (BSRs) associated with gas hydrate.
Sampling and direct observation are also essential for assessing the chemosynthetic ecosystems thriving in these extreme environmental conditions. This session aims to explore the role of submarine fluid flow and venting in: (i) shaping the seafloor as a geomorphic process, (ii) driving other geological processes (i.e. slope instability) (iii) posing potential marine geohazards, and (iv) driving biological processes. Contributions are invited from any offshore region, ranging from continental shelves to abyssal plains, based on multi-scale datasets including hydro-acoustic imagery, 2D/3D seismic reflection data, samples, and ROV observations.