NH2.6 | Geochemical and petrological monitoring in support of volcanic crises management: strengths, weaknesses and implications
Geochemical and petrological monitoring in support of volcanic crises management: strengths, weaknesses and implications
Co-organized by GMPV9
Convener: Ilenia Arienzo | Co-conveners: Rosa Anna Corsaro, M. Aulinas, Andrea Luca Rizzo, Stefano Ciolli

One of the major goals in volcanology is to improve our understanding of the processes that lead to volcanic eruptions, as well as those that occur during the eruptive events. The rate of mantle melting, the volatile content in primary melts, and the intracrustal accumulation and transfer of fluids and melts play a major role in modulating the evolution of volcanic activity over time. Moreover, they affect the magnitude and style of eruptions, regardless of the geodynamic context in which a volcanic system forms. These processes can be assessed through geochemical (fluids and rocks analyses) and petrological monitoring. Few eruptions worldwide (e.g. the 2021 La Palma and the 2020-2022 Mt. Etna eruption) allowed geologists to perform real-time monitoring and systematic sampling of gases, lava and/or tephra before and throughout the duration of an eruption. This approach helps to reconstruct magmatic processes and follow ongoing magmatic dynamics almost in a sequential and chronologically accurate way.
The syn-eruptive geochemical and petrological monitoring is carried out following well-defined procedures developed to rapidly produce datasets that, integrated with information from other monitoring techniques, help understanding the magmatic processes driving volcanic phenomena. These findings can be complemented with more extensive studies that require additional time and produce other datasets, aimed at investigating detailed aspects of pre-eruptive and eruptive processes. Overall, geochemical and petrological monitoring activities are highly challenging, but critical for understanding the evolution of ongoing volcanic crises, identifying mid/long-term precursors of future eruptions and providing robust scientific tools to support the decisions of the Authorities responsible for crisis management.
Our intent is to enhance the dialogue among scientists, who are the ‘providers’ of geochemical, petrological and other multidisciplinary data/results, and Decision-Makers, who are the primary ‘users’ of this information during a volcanic crisis. The aim is to leverage the experience gained from past or ongoing eruptions and unrest crises to highlight the strengths and weaknesses of geochemical and petrological monitoring of volcanic eruptions, and to define guidelines and best practices to apply in order to fulfil the requests of Decision-Makers for the management of a volcanic crisis.

One of the major goals in volcanology is to improve our understanding of the processes that lead to volcanic eruptions, as well as those that occur during the eruptive events. The rate of mantle melting, the volatile content in primary melts, and the intracrustal accumulation and transfer of fluids and melts play a major role in modulating the evolution of volcanic activity over time. Moreover, they affect the magnitude and style of eruptions, regardless of the geodynamic context in which a volcanic system forms. These processes can be assessed through geochemical (fluids and rocks analyses) and petrological monitoring. Few eruptions worldwide (e.g. the 2021 La Palma and the 2020-2022 Mt. Etna eruption) allowed geologists to perform real-time monitoring and systematic sampling of gases, lava and/or tephra before and throughout the duration of an eruption. This approach helps to reconstruct magmatic processes and follow ongoing magmatic dynamics almost in a sequential and chronologically accurate way.
The syn-eruptive geochemical and petrological monitoring is carried out following well-defined procedures developed to rapidly produce datasets that, integrated with information from other monitoring techniques, help understanding the magmatic processes driving volcanic phenomena. These findings can be complemented with more extensive studies that require additional time and produce other datasets, aimed at investigating detailed aspects of pre-eruptive and eruptive processes. Overall, geochemical and petrological monitoring activities are highly challenging, but critical for understanding the evolution of ongoing volcanic crises, identifying mid/long-term precursors of future eruptions and providing robust scientific tools to support the decisions of the Authorities responsible for crisis management.
Our intent is to enhance the dialogue among scientists, who are the ‘providers’ of geochemical, petrological and other multidisciplinary data/results, and Decision-Makers, who are the primary ‘users’ of this information during a volcanic crisis. The aim is to leverage the experience gained from past or ongoing eruptions and unrest crises to highlight the strengths and weaknesses of geochemical and petrological monitoring of volcanic eruptions, and to define guidelines and best practices to apply in order to fulfil the requests of Decision-Makers for the management of a volcanic crisis.