Archaea, belonging to the domain of prokaryotes, are a crucial component of the tree of life. They are ubiquitous in contemporary surface and near-surface environments, playing a vital role in maintaining Earth's ecological functions and mediating biogeochemical cycles. They are also considered one of the earliest forms of life and recognized as a significant force driving the development of the early Earth's biosphere. However, like bacteria, archaea have left few fossil records in ancient strata, limiting research on their evolution during Earth's early history and their role in geochemical cycles. This session aims to explore the feasibility of studying the co-evolution of archaea and the earth system by leveraging large-scale, high-completeness archaeal genome data, in conjunction with known major geological events (such as the Great Oxidation Event, Snowball Earth, and the formation and breakup of supercontinents) and biogeochemical modeling. Researchers from both earth and life sciences are welcome to contribute to this session.
Significance, Opportunities, and Feasibility of Studying the Co-Evolution of Archaea and the Earth System
Co-organized by CL1.1/SSP4
Convener:
Chuanlun Zhang
|
Co-conveners:
Francisco Rodriguez-Valera,
Filipa Sousa,
Fengping Wang,
Edmund MoodyECSECS