Please note that this session was withdrawn and is no longer available in the respective programme. This withdrawal might have been the result of a merge with another session.
Tropical peatlands are potentially the most carbon-dense ecosystems on earth but estimates of their total extent and carbon storage remain highly uncertain. In a natural condition, tropical peatlands are long-term C stores and support livelihoods, but anthropogenic disturbances (logging, drainage, degradation, agricultural conversion, fire, resource exploration) are increasing. These transformations result in high C loss, reduced C storage, increased greenhouse gas (GHG) emissions, loss of hydrological integrity, peat subsidence and increased risk of fire. For agricultural peatlands, changes in nutrient storage and cycling necessitate fertilizer use, with enhanced emissions of N2O. Under a warming climate, these impacts are likely to intensify and reduce the benefits to rural communities. This session welcomes contributions on all aspects of tropical peatland science, including peatland mapping and monitoring; the impact of climate on past, present and future tropical peatland formation, accumulation and C dynamics; GHG and nutrient flux dynamics; management strategies for GHG emissions mitigation and the maintenance or restoration of C sequestration and storage; and valuing ancestral knowledge of peatlands. Field based, experimental, modelling and palaeoecological studies of intact and modified systems from all tropical regions are welcomed.
Please decide on your access
Please use the buttons below to download the supplementary material or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the asset as indicated by the session. Copernicus Meetings cannot accept any liability for the content and the website you will visit.