BG3.25 | Polluted peatland landscapes: identifying problems and uncovering solutions
EDI
Polluted peatland landscapes: identifying problems and uncovering solutions
Convener: Gareth Clay | Co-conveners: Colin McCarter, Richard Fewster, Ellie Goud

For centuries peatlands have been recording humanity's toxic legacy. Pollutants, such as toxic metals and metalloids (e.g., lead, mercury, arsenic), hydrocarbons (e.g., heating oil, petroleum), or emerging contaminants (e.g., microplastics, forever chemicals), often accumulate in peatlands, resulting in elevated pollutant levels relative to mineral soil ecosystems. While at lower concentrations, such pollutants are tolerated in peatlands, higher levels can degrade the peatland processes that underpin critical peatland functions, such as carbon cycling, ecohydrology, or vegetation/microbial communities. These changes can not only impact the peatland itself, but also the wider landscape the peatlands are situated within. Additionally, disturbances like wildfire or drought can remobilise these stored pollutants to downstream ecosystems, potentially leading to environmental and human health issues decades (or even centuries) after the pollution was released.

We invite topics on the wide range of peatland pollutants and their impacts on peatland and landscape processes, with a focus on understanding the underlying biogeochemical, ecohydrological or biological mechanisms that support peatland function. Given the widespread nature of polluted peatlands, we are keen to represent a range of spatial scales (soil pore to global) using a variety of laboratory experiments, physicochemical measurements/monitoring, and/or numerical modelling techniques from a range of disciplines (e.g., biogeochemistry, ecology, microbiology, ecohydrology).

For centuries peatlands have been recording humanity's toxic legacy. Pollutants, such as toxic metals and metalloids (e.g., lead, mercury, arsenic), hydrocarbons (e.g., heating oil, petroleum), or emerging contaminants (e.g., microplastics, forever chemicals), often accumulate in peatlands, resulting in elevated pollutant levels relative to mineral soil ecosystems. While at lower concentrations, such pollutants are tolerated in peatlands, higher levels can degrade the peatland processes that underpin critical peatland functions, such as carbon cycling, ecohydrology, or vegetation/microbial communities. These changes can not only impact the peatland itself, but also the wider landscape the peatlands are situated within. Additionally, disturbances like wildfire or drought can remobilise these stored pollutants to downstream ecosystems, potentially leading to environmental and human health issues decades (or even centuries) after the pollution was released.

We invite topics on the wide range of peatland pollutants and their impacts on peatland and landscape processes, with a focus on understanding the underlying biogeochemical, ecohydrological or biological mechanisms that support peatland function. Given the widespread nature of polluted peatlands, we are keen to represent a range of spatial scales (soil pore to global) using a variety of laboratory experiments, physicochemical measurements/monitoring, and/or numerical modelling techniques from a range of disciplines (e.g., biogeochemistry, ecology, microbiology, ecohydrology).