BG3.39 | Heterogeneous soil processes and their influence on biogeochemical cycles
EDI
Heterogeneous soil processes and their influence on biogeochemical cycles
Co-organized by SSS5
Convener: Emily LacroixECSECS | Co-conveners: Kaizad Patel, Maya Engel

Soils and sediments are heterogeneous over space and time and across multiple scales. As a result, biogeochemical processes in soils are also heterogeneous over space and time. However, the degree to which small scale biogeochemical “anomalies” alter the fate of soil carbon, nutrients, and contaminants remains unknown. This session explores how heterogeneous soil processes and/or properties influence larger scale carbon, nutrient, and/or contaminant mobility. Topics may include (but are not limited to) how aggregate, moisture, rhizosphere, and redox dynamics ultimately influence 1) nutrient and contaminant behavior 2) greenhouse gas emissions 3) soil carbon storage and 4) mineral transformations. We welcome lab, field, or theoretical modelling-based studies spanning the nano-, micro-, meso-, and macro- scales as well as novel methodological insights that advance understanding of heterogeneous soil processes and their importance in biogeochemical cycles.

Soils and sediments are heterogeneous over space and time and across multiple scales. As a result, biogeochemical processes in soils are also heterogeneous over space and time. However, the degree to which small scale biogeochemical “anomalies” alter the fate of soil carbon, nutrients, and contaminants remains unknown. This session explores how heterogeneous soil processes and/or properties influence larger scale carbon, nutrient, and/or contaminant mobility. Topics may include (but are not limited to) how aggregate, moisture, rhizosphere, and redox dynamics ultimately influence 1) nutrient and contaminant behavior 2) greenhouse gas emissions 3) soil carbon storage and 4) mineral transformations. We welcome lab, field, or theoretical modelling-based studies spanning the nano-, micro-, meso-, and macro- scales as well as novel methodological insights that advance understanding of heterogeneous soil processes and their importance in biogeochemical cycles.