TS3.6 | Deformation rates and earthquake faults in Southeastern Europe: insights from multidisciplinary approaches.
EDI
Deformation rates and earthquake faults in Southeastern Europe: insights from multidisciplinary approaches.
Convener: Marianne Metois | Co-conveners: Petra Jamšek Rupnik, Branko Kordić, Stéphane Baize

Intracontinental areas, away from active rapid plates boundaries, do experience moderate to large earthquakes that are often destructive, poorly anticipated, and partially recorded due to sparse observation networks in their vicinity.
Among these, South-eastern Europe has experienced several Mw 6+ earthquakes in the last decades, caused by faults that were poorly studied. The area is influenced by the Adriatic/Dinarides collision in the west, and the Aegean extension in the south. It experiences low but measurable deformation rates and includes many potentially active faults, with remarkable geomorphological signal but poorly known activity rates.
This challenges our understanding of the geodynamics and the seismic cycle. Key questions remain open to understand the faults’ history and slip budget, the processes at play in leading the deformation, the seismic rupture characteristics, and the soil response to shaking.

This session aims at gathering contributions that address these challenges by developing studies on deformation and seismicity of intracontinental tectonically active areas, in particular in Southeastern Europe (but not restricted to). We encourage presentations of geophysical, seismological, geodetical, paleoseismological and geomorphological studies: our rationale is that a multidisciplinary approach is required to cover features and processes of different time and space scales.

Intracontinental areas, away from active rapid plates boundaries, do experience moderate to large earthquakes that are often destructive, poorly anticipated, and partially recorded due to sparse observation networks in their vicinity.
Among these, South-eastern Europe has experienced several Mw 6+ earthquakes in the last decades, caused by faults that were poorly studied. The area is influenced by the Adriatic/Dinarides collision in the west, and the Aegean extension in the south. It experiences low but measurable deformation rates and includes many potentially active faults, with remarkable geomorphological signal but poorly known activity rates.
This challenges our understanding of the geodynamics and the seismic cycle. Key questions remain open to understand the faults’ history and slip budget, the processes at play in leading the deformation, the seismic rupture characteristics, and the soil response to shaking.

This session aims at gathering contributions that address these challenges by developing studies on deformation and seismicity of intracontinental tectonically active areas, in particular in Southeastern Europe (but not restricted to). We encourage presentations of geophysical, seismological, geodetical, paleoseismological and geomorphological studies: our rationale is that a multidisciplinary approach is required to cover features and processes of different time and space scales.