Statistical post-processing techniques for weather, climate, and hydrological forecasts are powerful approaches to compensate for effects of errors in model structure or initial conditions, and to calibrate inaccurately dispersed ensembles. These techniques are now an integral part of many forecasting suites and are used in many end-user applications such as wind energy production or flood warning systems. Many of these techniques are flourishing in the statistical, meteorological, climatological, hydrological, and engineering communities. The methods range in complexity from simple bias correction up to very sophisticated machine learning and/or distribution-adjusting techniques that take into account correlations among the prognostic variables.
At the same time, a lot of efforts are put in combining multiple forecasting sources in order to get reliable and seamless forecasts on time ranges from minutes to weeks. Such blending techniques are currently developed in many meteorological centers. These forecasting systems are indispensable for societal decision making, for instance to help better prepare for adverse weather. Thus, there is a need for objective statistical framework for "forecast verification'', i.e. qualitative and quantitative assessment of forecast performance.
In this session, we invite presentations dealing with both theoretical developments in statistical post-processing and evaluation of their performances in different practical applications oriented toward environmental predictions, and new developments dealing with the problem of combining or blending different types of forecasts in order to improve reliability from very short to long time scales.
Advances in statistical post-processing, blending, and verification of deterministic and probabilistic forecasts
Co-organized by AS4/CL5/HS13
Convener:
Maxime TaillardatECSECS
|
Co-conveners:
Stéphane Vannitsem,
Sebastian LerchECSECS,
Jochen Broecker,
Julie Bessac