A new life for underground mines: Mine Thermal Energy Storage (MTES)
We invite contributions that explore various aspects of MTES, including, but not limited to:
- Case studies and pilot projects demonstrating the challenges, feasibility, and economic viability.
- Hydrogeological, geochemical, microbiological, geotechnical, and thermal dynamics of mines for energy storage applications.
- Integration with renewable energy sources such as solar, wind, geothermal energy, surplus industry heat, heat networks, etc.
- Innovative designs and technological developments in MTES systems.
- Impact on groundwater systems and thermal dynamics, including potential for thermal pollution or water contamination.
- Mine water usage and mine water geothermal energy (MWGE)
- Environmental and socio-economic impacts of MTES implementation in mining regions.
- Policy frameworks, regulatory considerations, and pathways to market.
The session will provide a platform for interdisciplinary discussions that bridge geoscience, engineering, environmental studies, and energy policy. By looking at both theoretical and practical perspectives, we aim to push the boundaries of MTES research and contribute to the global agenda for sustainable energy solutions.