SSS8.3 | Postglacial development of soil, vegetation, and landscapes - from moraines and debris to ecosystem services
EDI
Postglacial development of soil, vegetation, and landscapes - from moraines and debris to ecosystem services
Co-organized by BG3/GM9
Convener: Arnaud Temme | Co-conveners: Jana Eichel, Marcelo Fernandes, Michele Freppaz, Jean-Christophe Clément

Global glacial retreat is increasingly producing new ice-free areas in various geomorphological settings, from high-mountain valleys to coastal lowlands. The associated losses include decreased provision of meltwater in summer, decreased reflection and cooling, and in some cases increased natural hazards. However, there may be advantages, such as carbon storage in the vegetation, soil development and enlargement of pasture lands in now-exposed glacial sediments. An integrated, multi-disciplinary projection of the future properties and value of deglaciated and deglacierized valleys remains elusive but is necessary as we prepare for an uncertain future under climate change. Most existing research of these systems focuses on quantifying rates of individual processes in deglaciated valleys, mostly as a function of time since deglaciation in a space-for-time approach. Multidisciplinary studies are starting to explore interactions between pedological, ecological, chemical and geomorphic processes, and impacts of drivers other than time are being related to proglacial dynamics as well. Experimental work is starting to directly measure the impact of human interventions to increase functionality and productivity.
We warmly invite contributions of all these types of studies, particularly when they improve methodology, are multidisciplinary or from previously understudied mountain regions – including in the global south.

Global glacial retreat is increasingly producing new ice-free areas in various geomorphological settings, from high-mountain valleys to coastal lowlands. The associated losses include decreased provision of meltwater in summer, decreased reflection and cooling, and in some cases increased natural hazards. However, there may be advantages, such as carbon storage in the vegetation, soil development and enlargement of pasture lands in now-exposed glacial sediments. An integrated, multi-disciplinary projection of the future properties and value of deglaciated and deglacierized valleys remains elusive but is necessary as we prepare for an uncertain future under climate change. Most existing research of these systems focuses on quantifying rates of individual processes in deglaciated valleys, mostly as a function of time since deglaciation in a space-for-time approach. Multidisciplinary studies are starting to explore interactions between pedological, ecological, chemical and geomorphic processes, and impacts of drivers other than time are being related to proglacial dynamics as well. Experimental work is starting to directly measure the impact of human interventions to increase functionality and productivity.
We warmly invite contributions of all these types of studies, particularly when they improve methodology, are multidisciplinary or from previously understudied mountain regions – including in the global south.