AS1.12 | Moist Convection, Precipitation, and Cloud Formation: Processes and Impacts on Atmospheric Dynamics
Moist Convection, Precipitation, and Cloud Formation: Processes and Impacts on Atmospheric Dynamics
Convener: Masoud Rostami | Co-conveners: Bijan Fallah, Sullyandro Oliveira Guimarães

This session will explore the role of moist convection in atmospheric dynamics, with a particular focus on precipitation and cloud formation processes. Key topics will include the fundamental mechanisms driving moist convection, such as latent heat release and vertical motion, and their direct influence on cloud development and precipitation patterns. The session will examine how moist convection affects large-scale atmospheric circulation patterns, including Hadley cells and jet streams, and contributes to the formation and intensification of weather systems like tropical cyclones, monsoons, and convective storms. Additionally, the session will delve into the relationship between moist convection and precipitation, with an emphasis on extreme weather events and their severity. Discussions will also cover the feedback mechanisms between moist convection and other atmospheric processes, such as radiation and surface conditions, highlighting the latest advancements in observational techniques and numerical modeling that enhance our understanding of these dynamics. Finally, the session will address the implications of climate change on moist convection and cloud formation, including potential shifts in regional climate patterns and the frequency of extreme weather events.

This session will explore the role of moist convection in atmospheric dynamics, with a particular focus on precipitation and cloud formation processes. Key topics will include the fundamental mechanisms driving moist convection, such as latent heat release and vertical motion, and their direct influence on cloud development and precipitation patterns. The session will examine how moist convection affects large-scale atmospheric circulation patterns, including Hadley cells and jet streams, and contributes to the formation and intensification of weather systems like tropical cyclones, monsoons, and convective storms. Additionally, the session will delve into the relationship between moist convection and precipitation, with an emphasis on extreme weather events and their severity. Discussions will also cover the feedback mechanisms between moist convection and other atmospheric processes, such as radiation and surface conditions, highlighting the latest advancements in observational techniques and numerical modeling that enhance our understanding of these dynamics. Finally, the session will address the implications of climate change on moist convection and cloud formation, including potential shifts in regional climate patterns and the frequency of extreme weather events.