AS4.2 | Surface Exchange Processes in the Polar Regions
EDI
Surface Exchange Processes in the Polar Regions
Co-organized by CR7
Convener: Julia Schmale | Co-conveners: Priscilla Mooney, Freya SquiresECSECS, Risto Makkonen, Markus Frey

This session is intended to provide an interdisciplinary forum to bring together researchers working in the areas of high-latitude meteorology, atmospheric chemistry, air quality, biogeochemistry, boundary layer physics, cloud microphysics, surface radiative processes, oceanography, sea ice and climate.

The emphasis is on the role of boundary layer processes that mediate exchange of heat, momentum and mass between the Earth's surface (snow, sea-ice, ocean and land) and the atmosphere as well as the local to large-scale influences on these exchanges. An adequate understanding and quantification of these processes is necessary to improve modeling and prediction of future changes in the polar regions and their teleconnections with mid-latitude weather and climate.

It is expected that the recent implementation of long-term and new measurements from pan-Arctic networks and recent field campaigns (e.g. MOSAiC, ALPACA, ARTofMELT, POLAR CHANGEand modeling efforts, e.g. within CRiceS and PolarRES, will help diagnose large-scale and local processes as well as the coupling between local and large-scale dynamics and their impacts on climate, health and ecosystems.

We encourage submissions such as (but not limited to):
(1) External controls on the boundary layer such as clouds, radiation and long-range transport processes
(2) Results from field programs, and routine observatories, insights from laboratory studies, and advances in modeling and reanalysis,
(3) Use of data from pan-Arctic and Antarctic observing networks,
(4) Surface processes involving snow, sea-ice, ocean, land/atmosphere chemical and isotope exchanges, and natural aerosol sources
(5) Studies on atmospheric chemistry (aerosols and trace gases) and air pollution during polar winter
(6) The role of boundary layers in polar climate change and implications of climate change for surface exchange processes, especially in the context of reduced sea ice, wetter snow packs, increased glacial discharge and physical and chemical changes associated with an increasing fraction of first year ice and increasing open water.
(7) Surface energy budget of the coupled system, including contributions of ABL-dependent turbulent fluxes, clouds and radiative fluxes, precipitation and factors controlling snow/ice albedo.
(8) Sea ice dynamics and thermodynamics, e.g. wind driven sea-ice drift, snow on ice;
(9) Upper ocean mixing processes.
(10) Sea ice biogeochemistry and interactions at interfaces with sea ice.