Carbon dioxide, methane and nitrous oxide emissions are the primary greenhouse gases (GHGs) driving climate change and severely impacting the environment. It is essential to first control and reduce these emissions, and then implement novel engineering techniques such as carbon dioxide, methane capture, destruct and sequestration to further decrease their atmospheric levels. This session aims to connect science-based measurements, engineering approaches, industrial measurement-based studies and policy to provide an environment for exploring the potentials for reducing, destructing and storing emissions and atmospheric greenhouse gases abundances. Measurement-based emission quantification methods are key due to the EU Methane regulation and OGMP2.0 (level 5 = site level) for emission reduction regulation. Top-down and bottom-up emission quantification reconciliation is core of efforts for framing the emissions rates in well order; i.e. measurements, monitoring, reporting and verification.
Measurement-based methods are crucial for gaining a better understanding of emission sources, which can inform policymakers and engineers in developing relevant policies and engineering solutions to address both anthropogenic and natural emissions. While greenhouse gas emission sources are known, accurately quantifying their emissions remains a challenge. For this session abstracts are invited from studies focusing on campaign planning strategies, challenges, measurement-based studies, emission reduction cases, engineering techniques for capturing or storing emissions, the impact of legislation on emission reduction, flux-inversion modelling, integrations between methods and the relationship between GHG emissions and health.
This session welcomes contributions that utilize multi-scale observational data to enhance emission estimates, with a specific focus on methodologies, case studies, and implications for climate change mitigation. Researchers from academia and industry, policymakers, and practitioners are encouraged to share their findings and insights on the use of advanced automated and non-automated observational techniques to improve our understanding, management and engineering of GHG emissions from onshore and offshore sources.
Science, engineering, industry and policy to tackle greenhouse gas emissions from anthropogenic and natural sources: together to decline atmospheric GHGs abundances!
Co-organized by GI6