ITS4.2/CL0.6 | Where We Stand: Pinpointing the Current State of the Earth System
EDI
Where We Stand: Pinpointing the Current State of the Earth System
Convener: Levke CaesarECSECS | Co-conveners: Kasra Rafiezadeh Shahi, Dimitry Pokhotelov

Recent evaluations on the current states of the Earth system (e.g. the latest assessment of the nine Planetary Boundaries) and the integrity of the Earth system emphasize the alarming decline in Earth’s resilience, stability, and life support systems. Human activities are driving us beyond critical planetary boundaries, marking the onset of the Anthropocene—the current era in which humanity has become a geological force, significantly altering Earth's system processes and environments on a global scale. Earth’s resilience, stability, and life support systems are shaped by complex, non-linear interactions between biophysical processes and human influences. Such interactions encompass the carbon cycle, atmospheric systems, oceans, large-scale ecosystems, the cryosphere, and the increasing disruptions caused by socio-economic dynamics. In addition, as human pressures escalate, the risk of breaching key self-regulating feedbacks in the Earth system grows—potentially pushing critical components like the large ice sheets, the AMOC, and biomes such as the Amazon rainforest beyond tipping points. Crossing these thresholds could trigger abrupt, large-scale, and often irreversible changes that threaten ecosystems and human societies alike. Thus, a comprehensive understanding of the current state of planetary boundaries on a frequent basis is required. Owing to current technological advancements in Earth observation systems, as well as advanced AI-based solutions (e.g., large language models (LLMs) and Vision LLMs), such objectives can be attained. However, achieving this requires bringing together expertise from various disciplines, including geosciences, ecology, remote sensing, data science, socio-environmental sciences, and beyond.
In this session, we invite contributions from geoscientists, remote sensing specialists, data scientists, ecologists, climate modelers, and other relevant fields to explore how we can better measure and assess the planetary boundaries in the Earth system. We aim to foster interdisciplinary collaboration on identifying critical thresholds, understanding feedback mechanisms, and developing methods to quantify resilience at planetary scales. We are particularly interested in research utilizing diverse methodological approaches—ranging from Earth system modeling and remote sensing to data-driven analyses and conceptual frameworks—focused on stability and health indicators, as well as the cascading effects of system-wide shifts.