Human actions increasingly dominate hydrological processes worldwide, putting significant pressure on the interactions between freshwater systems, ecosystems, the Earth system and societies. The concept of system resilience is a useful but underutilised tool to address questions related to broad and varied systemic consequences of hydrological change across scales. Integrating biophysical and social-ecological system dynamics with freshwater systems under a framing of freshwater resilience advances beyond conventional approaches that characterise freshwater systems and their change in isolation. This opens pathways towards an increasingly holistic, system-of-systems conceptualization and analysis of the freshwater cycle, which is essential to understand and safeguard freshwater’s role in biosphere functioning and social well-being.
This session will incorporate studies on two overarching aspects of freshwater system resilience science. First, we are interested in how biophysical and social-ecological systems are conceptualised under the broad context of “freshwater system resilience”. We seek methodologically diverse insights on how freshwater scientists (across hydrological, environmental and social science, policy science and practitioner communities) define their systems of study and quantify the state and change of freshwater system resilience. Adding to common approaches such as hydrological modelling and Earth observation, we seek to incorporate diverse methodologies that advance, challenge, and complement these traditional methods. Studies that expand beyond scientific dimensions of freshwater resilience assessments by translating these insights into management-relevant decision support tools are equally welcomed.
The multi-scalar nature of freshwater resilience underpins both of these research themes. We invite studies that investigate freshwater resilience across local to global scales, and especially studies that consider cross-scale interactions and the scalability of functional change in integrated freshwater, social, ecological, and Earth systems.
The session aims to foster a welcoming forum to discuss the diverse and accelerating field of freshwater resilience science. We hope the session empowers the field to generate new insights on integrated hydrological, social, ecological, and Earth systems, and aids improved management of freshwater systems across scales to support social well-being and to safeguard the health of the biosphere.
Large-scale approaches for understanding freshwater resilience in social-ecological and Earth systems