GMVP1.4 | Addressing non-unique solutions to petrological problems: bridging data, models and uncertainties
Addressing non-unique solutions to petrological problems: bridging data, models and uncertainties
Co-organized by GD10
Convener: Simon SchornECSECS | Co-conveners: Mattia L. Mazzucchelli, Dominik Sorger

Our comprehension of petrological processes across a wide range of scales relies on measurable effects observed in a final state—compositional zoning of minerals, residual stresses around inclusions, and reaction textures—while their underlying causes remain inaccessible. Consequently, our approach to understanding these processes is intrinsically related to the solution of inverse problems, which are central to various disciplines such as geodynamics, petrology, geochronology, and petrochronology.
However, the inherent complexity, heterogeneity, and often incomplete nature of petrological data such as diffusion models, age distributions and thermobarometric determinations can result in multiple interpretations of the same process. This is characteristic of inverse problems with no unique solution (so-called ill-posed problems), which differ from the well-posed problems that have a unique solution as encountered in other scientific fields. In ill-posed problems, models are highly sensitive to even minor input data variations. To address these challenges, geoscientists intuitively integrate diverse data sources and methodologies such as modeling, experimental simulations, field observations, and geochemical analyses to narrow the range of potential solutions and reduce the degrees of freedom in complex geoscientific problems.
We invite contributions utilizing numerical, experimental, and natural observations to quantify the nature and rates of petrological and geological processes across various spatial and temporal scales. We are particularly interested in studies addressing the non-uniqueness of the interpretation of processes within a broad spectrum of fields, including, but not limited to, petrology, geodynamics, geochronology, and petrochronology. Our session welcomes research focused on the assessment of uncertainties in modeling within the geosciences, such as those involving numerical, thermodynamic, mechanical, experimental, analog, and geochemical simulations.
By exploring these diverse areas, collaboration and discussion will advance the methods used to address the challenges of non-unique geoscientific problems and improve our collective ability to interpret and model Earth's dynamic processes.

Our comprehension of petrological processes across a wide range of scales relies on measurable effects observed in a final state—compositional zoning of minerals, residual stresses around inclusions, and reaction textures—while their underlying causes remain inaccessible. Consequently, our approach to understanding these processes is intrinsically related to the solution of inverse problems, which are central to various disciplines such as geodynamics, petrology, geochronology, and petrochronology.
However, the inherent complexity, heterogeneity, and often incomplete nature of petrological data such as diffusion models, age distributions and thermobarometric determinations can result in multiple interpretations of the same process. This is characteristic of inverse problems with no unique solution (so-called ill-posed problems), which differ from the well-posed problems that have a unique solution as encountered in other scientific fields. In ill-posed problems, models are highly sensitive to even minor input data variations. To address these challenges, geoscientists intuitively integrate diverse data sources and methodologies such as modeling, experimental simulations, field observations, and geochemical analyses to narrow the range of potential solutions and reduce the degrees of freedom in complex geoscientific problems.
We invite contributions utilizing numerical, experimental, and natural observations to quantify the nature and rates of petrological and geological processes across various spatial and temporal scales. We are particularly interested in studies addressing the non-uniqueness of the interpretation of processes within a broad spectrum of fields, including, but not limited to, petrology, geodynamics, geochronology, and petrochronology. Our session welcomes research focused on the assessment of uncertainties in modeling within the geosciences, such as those involving numerical, thermodynamic, mechanical, experimental, analog, and geochemical simulations.
By exploring these diverse areas, collaboration and discussion will advance the methods used to address the challenges of non-unique geoscientific problems and improve our collective ability to interpret and model Earth's dynamic processes.