GMPV3.2 | How deformation and metamorphism interact: insights into thermal-hydrological-mechanical-chemical feedbacks in nature and experiments
EDI
How deformation and metamorphism interact: insights into thermal-hydrological-mechanical-chemical feedbacks in nature and experiments
Convener: Berit SchwichtenbergECSECS | Co-conveners: James Gilgannon, John Wheeler, Sascha Zertani

Both metamorphic reactions and deformational processes dissipate energy throughout the Earth. Tectonic deformation contorts rocks, changing mineral shapes and promoting the formation of localised structures like shear/compaction bands, shear zones or pseudotachylytes along slip surfaces. At the same time, metamorphic reactions transform rocks both systematically over entire orogens (e.g. Barrow zones) or preferentially in local high-strain structures. Many examples exist wherein the interaction and feedback between metamorphic and deformation processes have been clearly observed, such as changes in deformation mechanisms in response to mineral reactions. What remains a subject of discussion is exactly how they act together and how we formally describe deforming and reacting rocks.

As a community, we are slowly approaching an agreed upon formal framework to describe the relationship between metamorphism and deformation. In order to construct a testable and robust model, multiscale observations from field studies, laboratory experiments, and theoretical work are needed. This session will illuminate our most recent advances in understanding the thermal-hydrological-mechanical-chemical feedbacks operating in reacting and deforming rocks. We aim to draw a holistic picture of the various lines of evidence for how deforming and reacting rocks operate.

Therefore, we invite contributions based on experimental and/or natural deformation studies that document the dynamic link between metamorphism and deformation. Contributions may address, but are not limited to, topics related to the effect of stress on metamorphic reactions, the feedback between reaction and rheology, and/or how dynamic transport properties influence fluid-assisted deformation and reaction.

Both metamorphic reactions and deformational processes dissipate energy throughout the Earth. Tectonic deformation contorts rocks, changing mineral shapes and promoting the formation of localised structures like shear/compaction bands, shear zones or pseudotachylytes along slip surfaces. At the same time, metamorphic reactions transform rocks both systematically over entire orogens (e.g. Barrow zones) or preferentially in local high-strain structures. Many examples exist wherein the interaction and feedback between metamorphic and deformation processes have been clearly observed, such as changes in deformation mechanisms in response to mineral reactions. What remains a subject of discussion is exactly how they act together and how we formally describe deforming and reacting rocks.

As a community, we are slowly approaching an agreed upon formal framework to describe the relationship between metamorphism and deformation. In order to construct a testable and robust model, multiscale observations from field studies, laboratory experiments, and theoretical work are needed. This session will illuminate our most recent advances in understanding the thermal-hydrological-mechanical-chemical feedbacks operating in reacting and deforming rocks. We aim to draw a holistic picture of the various lines of evidence for how deforming and reacting rocks operate.

Therefore, we invite contributions based on experimental and/or natural deformation studies that document the dynamic link between metamorphism and deformation. Contributions may address, but are not limited to, topics related to the effect of stress on metamorphic reactions, the feedback between reaction and rheology, and/or how dynamic transport properties influence fluid-assisted deformation and reaction.