Please note that this session was withdrawn and is no longer available in the respective programme. This withdrawal might have been the result of a merge with another session.
ITS4.8/NH13.2 | Novel Approaches for Early Warning Systems: from AI to trans-disciplinary approaches
Novel Approaches for Early Warning Systems: from AI to trans-disciplinary approaches
Early Warning Systems (EWS) are critical tools for safeguarding societies against the growing threat of natural hazards, particularly as climate change increases the frequency and intensity of extreme events. However, as risks become more complex—driven by multi-hazard events, compound risks, and broader systemic challenges — conventional EWS approaches must evolve. This session will focus on cutting-edge developments and novel methodologies that enhance the effectiveness and reach of EWS, with an emphasis on integrating Artificial Intelligence (AI) and fostering transdisciplinary collaboration.
This session invites contributions that explore innovative approaches to EWS across the entire warning chain, from observations, to hazard and impact forecasting, warning production, communication and decision-making. Special attention will be given to multi-hazard, compound, and complex systemic risks, and the integration of both cutting-edge technological advancements and trans-disciplinary approaches. Thus, we welcome contributions related to artificial intelligence (AI), machine learning, remote sensing, and big data analytics for the development and implementation of EWS as well as contributions that examine the integration of physical and social science, including community-based warning systems, risk perception, and communication strategies towards the goal of the UN led “Early Warnings for All” initiative. This session seeks to enhance preparedness and response by reviewing case studies, methodological advancements, and theoretical contributions, that address observational innovations for early detection of hazards, advanced weather and hazard forecasting systems, and impact-based forecasting.
By addressing both the technical and societal aspects of EWS, this session aims to foster dialogue between disciplines, ensuring that future systems are more inclusive, equitable, and effective at reducing risks in the face of a changing climate. We seek abstracts from a diverse range of fields, including climate science, meteorology, hydrology, geoscience, engineering, and social sciences including policy studies, psychology, or communication science, to explore how novel approaches can enhance the resilience of communities to multi-hazard risks.
You have already stored your personal programme. Please decide:
Please use the buttons below to download the supplementary material or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the asset as indicated by the session. Copernicus Meetings cannot accept any liability for the content and the website you will visit.