ITS3.18/HS12.5 | Transport, interactions and biogeochemical process of emerging organic contaminants between water-soil interfaces/ systems
Transport, interactions and biogeochemical process of emerging organic contaminants between water-soil interfaces/ systems
Convener: Wei ChenECSECS | Co-conveners: Zulin Zhang, Stefano Albanese, Junwu Xiong, Rainer Lohmann

With the rapid development of modern society and economy, extensive expansion of human activities has resulted in the huge demands for wide range of synthetic organic chemicals and increases their discharge into the environment. These organic chemicals include ingredients of PPCPs, pesticides, hormones, industrial ingredients (such as flame retardants, PFASs, and plasticizers), and by-products. They are collectively termed emerging organic contaminants (EOCs).
The extensive application and presence of EOCs in our daily consumer products and the nature of these substances results in their widespread distribution with many being discharged primarily to the aquatic and soil environment. As a result, they have become ubiquitously detectable and pseudo-persistent in environments across the world with the potential for accumulation in food chains.
There has been wide ranging discussion about possible adverse effects of EOCs, such as emergence of antibacterial resistance, endocrine disrupting effects and toxicity. However, to the best of our knowledge, the risk assessment and pollution control for EOCs is challenging owing to the limited understanding of their transport, interactions and biogeochemical process among surface water, soil and groundwater interfaces/systems.
The session objective is to explore the state of the art in sampling methodologies, and lab scale, field and modelling studies for transport, interactions and biogeochemical process of EOCs between water-soil interfaces/systems, to provide a comprehensive perspective for understanding their environmental fate and behavior in the aquatic environment, for the further assessment of their potential risk and for pollution control implement. Potential topics include, but are not restricted to, the following:
• Sampling approaches for EOCs in surface water, soil and groundwater interfaces/ systems, which would include novel active sampling strategies and passive sampling techniques. Such techniques would provide important insights into process-based understanding of fate as well as for measurement campaigns on a range of spatial scales.
• Important experimental/lab scale, field and modelling studies on transport, interactions and biogeochemical process of emerging organic contaminants in sole surface water, groundwater and soil systems, and surface water-groundwater interfaces/systems, water-soil interfaces/systems surface water, and soil and groundwater interfaces/ systems.

With the rapid development of modern society and economy, extensive expansion of human activities has resulted in the huge demands for wide range of synthetic organic chemicals and increases their discharge into the environment. These organic chemicals include ingredients of PPCPs, pesticides, hormones, industrial ingredients (such as flame retardants, PFASs, and plasticizers), and by-products. They are collectively termed emerging organic contaminants (EOCs).
The extensive application and presence of EOCs in our daily consumer products and the nature of these substances results in their widespread distribution with many being discharged primarily to the aquatic and soil environment. As a result, they have become ubiquitously detectable and pseudo-persistent in environments across the world with the potential for accumulation in food chains.
There has been wide ranging discussion about possible adverse effects of EOCs, such as emergence of antibacterial resistance, endocrine disrupting effects and toxicity. However, to the best of our knowledge, the risk assessment and pollution control for EOCs is challenging owing to the limited understanding of their transport, interactions and biogeochemical process among surface water, soil and groundwater interfaces/systems.
The session objective is to explore the state of the art in sampling methodologies, and lab scale, field and modelling studies for transport, interactions and biogeochemical process of EOCs between water-soil interfaces/systems, to provide a comprehensive perspective for understanding their environmental fate and behavior in the aquatic environment, for the further assessment of their potential risk and for pollution control implement. Potential topics include, but are not restricted to, the following:
• Sampling approaches for EOCs in surface water, soil and groundwater interfaces/ systems, which would include novel active sampling strategies and passive sampling techniques. Such techniques would provide important insights into process-based understanding of fate as well as for measurement campaigns on a range of spatial scales.
• Important experimental/lab scale, field and modelling studies on transport, interactions and biogeochemical process of emerging organic contaminants in sole surface water, groundwater and soil systems, and surface water-groundwater interfaces/systems, water-soil interfaces/systems surface water, and soil and groundwater interfaces/ systems.