ITS4.17/BG0.9 | Socio-economic and climate resilience of agricultural systems: advancing monitoring and modelling
Socio-economic and climate resilience of agricultural systems: advancing monitoring and modelling
Convener: Rui Catarino | Co-conveners: J. Sauer, Manon DardonvilleECSECS, Frank Dentener, Matteo Zampieri

In the face of increasing climate change impacts, environmental stresses, limitations on natural resource, along with socio-economic pressures, safeguarding the resilience of agricultural systems is a critical policy imperative. Resilience can be defined in various ways and typically includes elements of preparedness, absorbing and recovering from shocks, adaptation as well as transformation. This session aims to address key challenges of agricultural resilience, including the need for a unified conceptual monitoring and modelling framework, to facilitate the development of coherent policies across regions, countries and sectors. More specifically, the session will provide an overview of current research (methods and knowledge), identify gaps, and propose applicable strategies for enhancing resilience evaluation. Hereby, we aim to bridge natural and socio-economic sciences by addressing links and synergies with food security and sustainability.

We welcome contributions on defining and quantifying resilience from landscape to national scales with innovative methods (e.g. multicriteria analysis, machine learning, integrated assessment modelling). We invite interdisciplinary resilience studies that integrate observational and model perspectives, and address both biophysical and socio-economic aspects.

Studies ideally assess key resilience drivers and effects ranging from climatic, environmental, economic and social factors that together sketch a comprehensive picture of the resilience of agricultural systems.

We suggest that contributions address the following questions: Which system and shocks/threats are considered and should be prioritized? Where, and on which timescale do we need to increase resilience? Which properties reinforce agricultural resilience? Over which time scale should resilience be assessed?