GMPV9.1 | Petrological monitoring of active volcanoes: advances, limitations and challenges
EDI
Petrological monitoring of active volcanoes: advances, limitations and challenges
Convener: Claudia D'Oriano | Co-conveners: Giuseppe Re, Heather Wright, Jorge Romero, Maurizio Petrelli

Petrological monitoring of active volcanoes, or the syn-eruptive study of volcanic products, is the only approach that allows direct and near real-time measurement of the physical-chemical properties of the magma that feeds an eruption. Collection of time-series of samples over the course of an eruption enables tracking temporal evolution of processes acting within the plumbing system and early detection of its changes. Overall, petrological monitoring enables: 1) tracking of variations in magma properties through time; 2) comparison with previous eruptions; 3) preliminary insight on the magmatic processes responsible for the observed eruptive phenomena; 4) possible forecast of the eruptive style, including the shift towards increasing or decreasing intensity of an eruption; 5) understanding the potential impact on human and animal health related to pollutants transported by ash.

Petrological investigations have had an increasing impact on the volcano monitoring framework over the past decades. However, there are still many challenges to ensuring an effective petrological monitoring structure. For example, there is not yet a widely acknowledged operative protocol to define the minimum analytical procedures to perform (i.e. componentry; external morphology; chemical composition; vesicularity and crystallinity); there are logistic difficulties related to field surveys for sample collection, especially in remote areas, and onsite infrastructure for sample preparation and analyses is commonly insufficient. On the other hand, thanks to advanced methodologies and technologies, it is possible to use new petrologic monitoring parameters (i.e. trace elements in matrix glasses and minerals; machine learning) capable of providing increasingly detailed and ready-to-use information to derive magmatic processes and capture small variations that can be considered precursors of changes in the eruptive style.

This session welcomes contributions from experiences related to petrological monitoring of active volcanoes, with particular attention to: (1) sampling strategies, also in collaboration with local communities and through the creation of mobile network tools; (2) new operating procedures that include the use of data obtained with new analytical tools; (3) integration of new practices into analytical protocols with innovations deriving from statistical methods and artificial intelligence; (4) operational forecasting implementation of petrologic monitoring results

Petrological monitoring of active volcanoes, or the syn-eruptive study of volcanic products, is the only approach that allows direct and near real-time measurement of the physical-chemical properties of the magma that feeds an eruption. Collection of time-series of samples over the course of an eruption enables tracking temporal evolution of processes acting within the plumbing system and early detection of its changes. Overall, petrological monitoring enables: 1) tracking of variations in magma properties through time; 2) comparison with previous eruptions; 3) preliminary insight on the magmatic processes responsible for the observed eruptive phenomena; 4) possible forecast of the eruptive style, including the shift towards increasing or decreasing intensity of an eruption; 5) understanding the potential impact on human and animal health related to pollutants transported by ash.

Petrological investigations have had an increasing impact on the volcano monitoring framework over the past decades. However, there are still many challenges to ensuring an effective petrological monitoring structure. For example, there is not yet a widely acknowledged operative protocol to define the minimum analytical procedures to perform (i.e. componentry; external morphology; chemical composition; vesicularity and crystallinity); there are logistic difficulties related to field surveys for sample collection, especially in remote areas, and onsite infrastructure for sample preparation and analyses is commonly insufficient. On the other hand, thanks to advanced methodologies and technologies, it is possible to use new petrologic monitoring parameters (i.e. trace elements in matrix glasses and minerals; machine learning) capable of providing increasingly detailed and ready-to-use information to derive magmatic processes and capture small variations that can be considered precursors of changes in the eruptive style.

This session welcomes contributions from experiences related to petrological monitoring of active volcanoes, with particular attention to: (1) sampling strategies, also in collaboration with local communities and through the creation of mobile network tools; (2) new operating procedures that include the use of data obtained with new analytical tools; (3) integration of new practices into analytical protocols with innovations deriving from statistical methods and artificial intelligence; (4) operational forecasting implementation of petrologic monitoring results