GMPV7.4 | All about inclusions in minerals: key windows into the past
EDI
All about inclusions in minerals: key windows into the past
Convener: Gabriele Carnevale | Co-conveners: Antonio Caracausi, Vincenzo Stagno, Hélène Balcone-Boissard, Sonja Aulbach

The vast majority of minerals are enriched in various types of inclusions (solid, melt, and fluid). They represent key windows into Earth’s processes though time. Solid mineral inclusions preserve phase equilibrium data and pressure-temperature-composition conditions, revealing the formation history and source of their host minerals. Melt inclusions provide crucial information about magmatic evolution, recording pristine concentrations of volatiles that are usually lost during magma solidification and degassing during ascent. In the same way, fluid inclusions preserve the physical and chemical characteristics of fluids trapped within minerals during their formation, offering a direct record of the composition and evolution of the fluid phase in geological systems, essential for understanding fluid-rock interactions.

By integrating findings from petrology, mineral chemistry, and isotope geochemistry, this session aims to bring together researchers from various disciplines to explore the importance of all type of inclusions, contributing to our understanding of Earth’s composition and dynamic, whose expression at the surface are volcanic eruption and earthquakes. We invite contributions that investigate these topics across different tectonic settings, including but not limited to:
1) Contributions on the importance of understanding the pressure-temperature-composition-oxygen fugacity conditions (P-T-X-fO₂) and phase equilibria that control (ultra-)high-pressure phase relations based on mineral inclusions (e.g., diamond) that provide a unique window into deep and in part early mantle processes.
2) Research that investigates the evolution of magmatic and fluid processes through the analysis of melt/fluid inclusions trapped within minerals, with particular emphasis on investigating the behaviour of volatile components including stable and noble gases isotopes, and on reconstructing the main characteristics of the volcanic plumbing systems.
3) Studies on metamorphic and hydrothermal processes that constrain the role of fluids in mineral reactions and mass transfer, and their migration along faults and fractures, offering clues about the role of fluids in seismic activity.

Through this session, we aim to foster a multidisciplinary exchange of ideas that will advance our understanding of the potential of studying each type of inclusion and its applications in different geological contexts in the broader geodynamic framework.

The vast majority of minerals are enriched in various types of inclusions (solid, melt, and fluid). They represent key windows into Earth’s processes though time. Solid mineral inclusions preserve phase equilibrium data and pressure-temperature-composition conditions, revealing the formation history and source of their host minerals. Melt inclusions provide crucial information about magmatic evolution, recording pristine concentrations of volatiles that are usually lost during magma solidification and degassing during ascent. In the same way, fluid inclusions preserve the physical and chemical characteristics of fluids trapped within minerals during their formation, offering a direct record of the composition and evolution of the fluid phase in geological systems, essential for understanding fluid-rock interactions.

By integrating findings from petrology, mineral chemistry, and isotope geochemistry, this session aims to bring together researchers from various disciplines to explore the importance of all type of inclusions, contributing to our understanding of Earth’s composition and dynamic, whose expression at the surface are volcanic eruption and earthquakes. We invite contributions that investigate these topics across different tectonic settings, including but not limited to:
1) Contributions on the importance of understanding the pressure-temperature-composition-oxygen fugacity conditions (P-T-X-fO₂) and phase equilibria that control (ultra-)high-pressure phase relations based on mineral inclusions (e.g., diamond) that provide a unique window into deep and in part early mantle processes.
2) Research that investigates the evolution of magmatic and fluid processes through the analysis of melt/fluid inclusions trapped within minerals, with particular emphasis on investigating the behaviour of volatile components including stable and noble gases isotopes, and on reconstructing the main characteristics of the volcanic plumbing systems.
3) Studies on metamorphic and hydrothermal processes that constrain the role of fluids in mineral reactions and mass transfer, and their migration along faults and fractures, offering clues about the role of fluids in seismic activity.

Through this session, we aim to foster a multidisciplinary exchange of ideas that will advance our understanding of the potential of studying each type of inclusion and its applications in different geological contexts in the broader geodynamic framework.