Retrieving the atmospheric properties of directly imaged planets
- 1Max-Planck-Institut für Astronomie, Heidelberg, Germany (molliere@mpia.de)
- *A full list of authors appears at the end of the abstract
Young gas giant planets still glow hot from formation, sometimes even showing signs of active accretion. Studying the atmospheres of these directly imaged planets may help placing constraints on how they formed, which may also shed light on the formation process of the planetary systems they reside in. In general, this may be achieved by connecting atmospheric to planetary composition, and planetary composition to planet formation. In my talk I will present our work that investigates the first step of this process, namely constraining the atmospheric abundances of gas giant exoplanets via free retrievals of GRAVITY, SPHERE and GPI observations. Free retrievals work by parameterizing the atmospheric structure as much as possible when calculating spectra, thereby allowing the data to constrain the atmosphere’s state. This relaxes the need for a model to fulfill given assumptions which may not accurately describe the atmospheric physics, due to modeling uncertainties and oversimplifications. At the same time caution is required because unphysical atmospheric models can potentially lead to excellent fits to spectroscopic observations. I will show why including clouds and scattering is crucial for the analysis of directly imaged planets, what the effects of using inappropriate cloud models are, and outline the next steps to develop this analysis method further.
P. Mollière, T. Stolker, S. Lacour, G. P. P. L. Otten, J. Shangguan, B. Charnay, T. Molyarova, M. Nowak, Th. Henning, G.-D. Marleau, D. A. Semenov, E. van Dishoeck, F. Eisenhauer, P. Garcia, R. Garcia Lopez, J. H. Girard, A. Z. Greenbaum, S. Hinkley, P. Kervella, L. Kreidberg, A.-L. Maire, E. Nasedkin, L. Pueyo, I. A. G. Snellen, A. Vigan, J. Wang, P. T. de Zeeuw, A. Zurlo
How to cite: Mollière, P. and the ExoGRAVITY team and collaborators: Retrieving the atmospheric properties of directly imaged planets, Europlanet Science Congress 2020, online, 21 September–9 Oct 2020, EPSC2020-131, https://doi.org/10.5194/epsc2020-131, 2020