Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020
Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020
EPSC Abstracts
Vol.14, EPSC2020-96, 2020
https://doi.org/10.5194/epsc2020-96
Europlanet Science Congress 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Morphometry and temperature of small sub-10 km craters at Mercury’s northern pole: Implications for source and stability of water ice

Hannah Susorney1, Carolyn Ernst2, and Nancy Chabot2
Hannah Susorney et al.
  • 1University of Bristol, Earth Sciences, Bristol, United Kingdom of Great Britain and Northern Ireland (hannah.susorney@bristol.ac.uk)
  • 2The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

Mercury’s polar regions host deposits of radar-bright material in regions of permanent shadow, commonly the interior of impact craters, and the deposits are hypothesised to be water ice (i.e., Chabot et al., 2018). Thermal modelling, prior to the arrival of the MESSENGER mission, found that water ice is not thermally stable in craters smaller than 10 km, assuming the craters had a depth-to-diameter ratio of 0.2 (Vasavada et al., 1999). Studies of the distribution of radar-bright deposits have identified deposits in craters under 10 km (Deutsch, et al., 2016). In this study, we used the high-resolution north polar topography from the MESSENGER mission to evaluate the morphometry and temperatures of craters with diameters of 5-10 km to explore if these craters could host stable water ice on geologic timescales.

We measured the depth and diameter of 201 5-10 km in diameter craters between 75-85° N. MLA tracks that bisected the crater were used to measure the depth and diameter of 99 craters, spanning all longitudes of this north polar region. Thermal models for the north polar region of Mercury use the gridded MLA topography sampled at 1 km resolution (Paige et al., 2013; Chabot et al., 2018), so it was important to ensure the gridded topography accurately captured the craters’ shapes before using the results of these thermal models for these small craters, Comparisons between the MLA track profiles and the profiles taken through the gridded MLA product showed consistent depth to diameter profiles in both datasets, substantiating the use of the gridded MLA product to be used to determine depth and diameter values for these craters and the thermal models for these craters to be used to explore the stability of water ice in these craters.

The average depth-to-diameter ratio of the 201 craters is 0.15, 25% lower than the estimate used in pre-MESSENGER thermal study (Vasavada et al., 1999). Thermal measurements of the 156 craters show that many of them have average temperatures below 110 K, meaning that they have thermal conditions that would allow water ice to be stable on geologic timescales under a thin layer of insulating material. Only three craters had small, single-pixel regions with maximum temperatures under 110 K, suggesting that water ice is not stable on the surface in the majority of small craters, except for isolated regions or below the 1-km scale of the thermal model. These results show that water ice would be stable in simple, sub-10 km diameter craters on Mercury and that the presence of radar-bright deposits in these craters is not a constraint on the age of radar-bright deposits.

However, our mapping results do show a clear correlation with radar-bright signatures and longitude. In particular, around 60°E longitude, we observe a higher percentage of radar-bright craters. One of Mercury’s two cold poles is nearby at 90°E, but a large complex crater, Prokofiev-112 km in diameter, is also located at 64°E and many of the craters that are radar-bright appear to be secondaries of Prokofiev. Possible explanations for this longitude distribution are being actively investigated, including association with Prokofiev, cold-pole thermal conditions, effects of radar visibility, and the potential for uneven water ice distribution in the small craters near Mercury’s north pole.  

How to cite: Susorney, H., Ernst, C., and Chabot, N.: Morphometry and temperature of small sub-10 km craters at Mercury’s northern pole: Implications for source and stability of water ice, Europlanet Science Congress 2020, online, 21 September–9 Oct 2020, EPSC2020-96, https://doi.org/10.5194/epsc2020-96, 2020