Europlanet Science Congress 2021
Virtual meeting
13 – 24 September 2021
Europlanet Science Congress 2021
Virtual meeting
13 September – 24 September 2021
EPSC Abstracts
Vol. 15, EPSC2021-287, 2021, updated on 21 Jul 2021
https://doi.org/10.5194/epsc2021-287
European Planetary Science Congress 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Dynamic modeling of ion sputter yields in agreement with recent experimental data

Noah Jäggi1, Herbert Biber2, Paul Szabo2, Audrey Vorburger1, Andreas Mutzke3, Friedrich Aumayr2, Peter Wurz1, and André Galli1
Noah Jäggi et al.
  • 1Physics Institute, University of Bern, Bern, Switzerland (noah.jaeggi@space.unibe.ch)
  • 2Institute of Applied Physics, TU Wien, Vienna, Austria
  • 3Max Planck Institute for Plasma Physics (IPP), Greifswald, Germany

Atmosphere-free celestial bodies are constantly irradiated by solar wind or magnetospheric ions. In the case of Mercury, the intrinsic magnetic field, although weak, leads to localized plasma precipitation around the magnetospheric cusps and nightside precipitation below the magnetotail [1, 2, 3]. The material ejected by the impacting ions (sputtering) thereby contributes to the exosphere and magnetosphere surrounding Mercury [4, 5, 6]. Magnetospheric ions originate from ionization of exospheric atoms or ions directly sputtered from the surface. Those can become part of the magnetospheric plasma, and have trajectories that lead them back to Mercury’s surface [7, 8].

 

We explored different scenarios of the sputtering of Mercury’s surface with a strong focus on dynamic surface alteration and sputtering. This includes time varying inputs from varying solar wind conditions as well as contributions of secondary ions originating from Mercury’s exosphere and magnetosphere. We rely on the dynamic sputter model SDTrimSP [9] and compare the simulation results with more simplistic TRIM [10] simulations as well as recent laboratory results of solar wind ion sputtering on Mercury analogues [11, 12, 13].

 

 

[1] Winslow, R.M., et al. (2017). J. Geophys.Res.-Space, 122(5), 4960–4975. 

[2] Winslow, R.M., et al.  (2014). Geophys. Res. Lett., 41(13), 4463–4470.

[3] Schmidt, C.A. (2013). J. Geophys.Res.-Space, 118(7), 4564–4571. 

[4] Killen, R.M., & Ip, W. H. (1999). Rev. Geophys., 37(3), 361–406.

[5] Raines, J.M., et al. (2016). Plasma Sources of Solar System Magnetospheres (pp. 91–144). Springer.

[6] Wurz, P., et al., (2019). J. Geophys. Res., 124, 2603–2612.

[7] Yagi, M., et al. (2017). J. Geophys.Res.-Space, 122(11), 10,990-11,002. 

[8] Delcourt, D.C., et al. (2003). Ann. Geophys., 21(8), 1723–1736.

[9] Mutzke, A., et al. (2019). SDTrimSP Version 6.00. Max-Planck-Institut für Plasmaphysik.

[10] Ziegler, J.F., et al. (2010). Nucl. Instrum. Methods Phys. Res. B, 268, 1818–1823. 

[11] Jäggi, N., et al. (2021). Icarus, 365, 114492. 

[12] Biber H., et al. (2020). Nucl. Instrum. Methods Phys. Res. B, 480, 10. 

[13] Szabo, P.S., et al. (2018). Icarus, 314, 98–105.

How to cite: Jäggi, N., Biber, H., Szabo, P., Vorburger, A., Mutzke, A., Aumayr, F., Wurz, P., and Galli, A.: Dynamic modeling of ion sputter yields in agreement with recent experimental data, European Planetary Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-287, https://doi.org/10.5194/epsc2021-287, 2021.