Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022
EPSC Abstracts
Vol. 16, EPSC2022-279, 2022, updated on 15 Mar 2024
https://doi.org/10.5194/epsc2022-279
Europlanet Science Congress 2022
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Is icy grains of dense molecular clouds at the origin of a fraction of the organic content of meteorites?

Gregoire Danger1,7, Alexander Ruf1, Julien Maillard2, Vassilissa Vinogradoff1, Carlos Afonso2, Isabelle Schmitz-Afonso2, Laurent Remusat5, Zelimir Gabelica6, and Philippe Schmitt-Kopplin3,4
Gregoire Danger et al.
  • 1Aix-Marseille Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, CNRS, Institut Origines, Marseille, France
  • 2Normandie Univ, COBRA UMR 6014 et FR 3038 Univ Rouen; INSA Rouen; CNRS IRCOF, 1 Rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
  • 3Helmholtz Zentrum München, Analytical BioGeoChemistry, Neuherberg, Germany
  • 4Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
  • 5Muséum National d’Histoire Naturelle, Sorbonne Université, UMR CNRS 7590, Institut de minéralogie, de physique des matériaux et de cosmochimie, Paris, France
  • 6Université de Haute Alsace, ENSCMu, Lab. GSEC, 3, Rue Alfred Werner - F-68093 Mulhouse Cedex, France
  • 7Institut Universitaire de France (IUF)

Introduction

Carbonaceous chondrites are sources of information witness on the origin of the solar system. Their organic content is conventionally classified as soluble (SOM) and insoluble organic matter (IOM), where the latter represents the majority of their organic content. Relationships between SOM and IOM are still unknown, and their possible link is still debated. Using laboratory experiments, processes possibly at the origin of SOM and IOM are investigated, by assuming that dense molecular ices is one of the sources of organic matter of the solar system. Each organic fraction is analyzed by different analytical technics providing a complete information on their composition and evolution.

Results

Laboratory experiments are used to simulate the organic matter that could be formed at the surface of grains of dense molecular clouds during the formation and evolution of the solar nebula evolution. Organics formed in laboratory are then considered as analogues to the ones present in protoplanetary grains that could be then incorporated in the forthcoming asteroids and comets. In these interplanetary bodies, they could endure secondary alteration such as aqueous alteration or metamorphism. These simulations from dense molecular clouds to asteroids provide the formation of soluble and insoluble organic matter, which compositions differ depending on local environments.

Results on laboratory are then compared to organic content of natural objects that are SOM and IOM of meteorites. This approach provide information on the scenario in which icy grains of dense molecular clouds could have been at the origin of the organic content of interplanetary bodies of the solar systems.

  • Dense molecular ices are a source of a high molecular diversity.
  • Organics generated from icy grains differ from the ones observed in the SOM of meteorites.
  • Aqueous alteration of organics generated form icy grains simulating secondary alteration inside asteroids present an important evolution that gives molecular similarities with meteorite SOM.
  • The soluble organics formed from icy grains can be a source of insoluble organic matter at the surface of grains.
  • The insoluble organics formed from the soluble organic processing present similarities with the IOM of meteorites.

Acknowledgements

We are grateful to the meteorite collection of the Muséum National d’Histoire Naturelle in Paris for providing the sample of the Paris meteorite.

N.C. and L.R. thank the European Research Council for funding via the ERC projects PrimChem (grant agreement No. 636829) and HYDROMA (grant agreement No. 819587). This work was supported by the European Regional Development Fund (ERDF) No. HN0001343, the European Union’s Horizon 2020 Research Infrastructures program (Grant Agreement 731077), the Région Normandie, and the Laboratoire d’Excellence (LabEx) SynOrg (ANR-11-LABX-0029). Access to a CNRS FTICR research infrastructure (FR3624) is gratefully acknowledged. G.D., A.R., and L.R. thank the Agence nationale de la recherche (RAHIIA_SSOM, ANR-16-CE29-0015), the Centre National d’Etudes Spatiales from its exobiology program, and the Centre National de la Recherche Française (CNRS, “Physique et Chimie du Milieu Interstellaire” (PCMI) and “Programme National de Planétologie” (PNP) programs) for their financial support..

References

  • Unprecedented molecular diversity revealed in meteoritic insoluble organic matter : The Paris meteorite’s case. G. Danger*, A. Ruf, J. Maillard, J. Hertzog, V. Vinogradoff, P. Schmitt-Kopplin, C. Afonso, N. Carrasco, I. Schmitz-Afonso, L. Le Sergeant d’Hendecourt, Laurent Remusat. Planetary Science Journal, 2020, 1, 55.
  • Characterization of interstellar/cometary organic residue analogs using very high resolution mass spectrometry, G. Danger*, F-R. Orthous-Daunay, P. de Marcellus, P. Modica, V. Vuitton, F. Duvernay, L. Le Sergeant d’Hendecourt, R. Thissen, and T. Chiavassa, Geochimica & Cosmochimica Acta, 2013, 118, 184-201
  • Photo and thermochemical evolution of astrophysical ice analogs as a source of soluble and insoluble organic materials in Solar System minor bodies. P. de Marcellus, A. Fresneau, R. Brunetto, G. Danger*, F. Duvernay, C. Meinert, U. J. Meierhenrich, F. Borondics, T. Chiavassa, L. Le Sergeant d’Hendecourt. Monthly Notices of the Royal Astronomical Society, 2017, 464, 114-120.
  • Cometary materials originating from interstellar ices : clues from laboratory experiments. A. Fresneau, N. Abou Mrad, L. LS d’Hendecourt, F. Duvernay, L. Flandinet, F-R Orthous-Daunay, V. Vuitton, R. Thissen, T. Chiavassa, G. Danger*. The Astrophysical Journal, 2017, 837, 168.
  • Laboratory experiments to unveil the molecular reactivity occurring during the processing of ices in the protosolar nebula. T. Gautier*, G. Danger*, O. Mousis, F. Duvernay, V. Vuitton, L. Flandinet, R. Thissen, F.-R. Orthous-Daunay, A. Ruf, T. Chiavassa, L. S. d’Hendecourt. Earth and Planetary Science Letters, 2020, 531, 116011
  • Exploring the link between molecular cloud ices and chondritic organic matter in laboratory. G. Danger*, V. Vinogradoff*, M. Matzka, J-C. Viennet, L. Remusat, S. Bernard, A. Ruf, L. Le Sergeant d’Hendecourt and P. Schmitt-Kopplin. Nature Communication, 2021, 12, 3538
  • The transition from soluble to insoluble organic matter in interstellar ice analogs and meteorites, G. Danger , A. Ruf, T. Javelle, J. Maillard 5, V. Vinogradoff, Carlos Afonso, Isabelle Schmitz-Afonso, L. Remusat, Z. Gabelica, P. Schmitt-Kopplin, 2022, submitted.

How to cite: Danger, G., Ruf, A., Maillard, J., Vinogradoff, V., Afonso, C., Schmitz-Afonso, I., Remusat, L., Gabelica, Z., and Schmitt-Kopplin, P.: Is icy grains of dense molecular clouds at the origin of a fraction of the organic content of meteorites?, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-279, https://doi.org/10.5194/epsc2022-279, 2022.

Discussion

We are sorry, but the discussion is only available for users who registered for the conference. Thank you.