EPSC Abstracts
Vol. 17, EPSC2024-1013, 2024, updated on 03 Jul 2024
https://doi.org/10.5194/epsc2024-1013
Europlanet Science Congress 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A joint computational and experimental study of the reactions between N(2D) and simple aromatic hydrocarbons 

Marzio Rosi1,2, Nadia Balucani3, Adriana Caracciolo3, Piergiorgio Casavecchia2,3, Noelia Faginas-Lagoi2,3, Luca Mancini3, Dimitrios Skouteris4, and Gianmarco Vanuzzo3
Marzio Rosi et al.
  • 1Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, Via Duranti, 06125 Perugia, Italy
  • 2CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
  • 3Dipartimenti di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
  • 4Master-Tec srl, via Sicilia 41, 06128 Perugia, Italy

The reactivity of atomic nitrogen in its ground state (4S) with closed shell molecules, like hydrocarbons, is very low, while atomic nitrogen in its first electronically excited 2D state shows a significant reactivity with hydrocarbons.  N(2D) was detected in the water-poor comet C/2016 R2 (Pan-STARRS)(Raghuram et al. 2020) and in a plethora of strongly photon-irradiated environments including the Orion Nebula (M42), low-ionization H II regions (M43), planetary nebulae (i.e. the Ring Nebula), supernova remnants (i.e. the Crab Nebula), and Herbig-Haro objects (Ferland et al. 2012,  Dopita et al. 1976, Ferland et al. 1988,  Bautista 1999).Polycyclic aromatic hydrocarbons (PAHs) and related species are presumed to be omnipresent in the interstellar medium (ISM) and aromatic chemistry is widespread in the earliest stages of star formation.

Nitrogen, in its molecular form, and hydrocarbons, both aliphatic and aromatic, are also the main components of the atmosphere of Titan (Hörst 2017, Vuitton et al. 2006). This atmosphere is similar, in some aspects, to the primordial atmosphere of Earth (Vuitton et al. 2013, Balucani 2012) and for this reason has been extensively studied by several missions (Brown et al. 2010), Lai et al. 2017). Among the hydrocarbons identified on Titan there is benzene (Vuitton et al. 2008, Clark et al. 2010), while toluene is easily produced by the reaction of C6H5, obtained by photodissociation of benzene, and CH3 (Loison et al. 2019). Dinitrogen in the atmosphere of Titan can dissociate into atomic nitrogen both in its ground state or 2D excited state in similar amounts (Lavvas et al. 2011, Dutuit et al. 2013) and N (2D) can easily react with other constituents of the upper atmosphere of Titan or with species present in the ISM medium (Balucani 2013, Balucani 2009, Imanaka & Smith 2010, Balucani et al. 2001, Balucani et al. 2006, Homayoon et al. 2014, Balucani et al. 2015, Israel et al. 2005).

In this contribution, we report on a theoretical characterization of the reaction involving N(2D) and simple aromatic hydrocarbons, like benzene (Balucani et al. 2018, 2019, 2023), toluene (Rosi et al. 2020. 2021) or pyridine (Mancini et al. 2024). We have already investigated the reactions of atomic nitrogen in its excited 2D state with various aliphatic hydrocarbons, like CH4 (Balucani et al. 2009), C2H2 (Balucani et al. 2000A), C2H4 (Balucani et al. 2000B, 2012), C2H6 (Balucani et al. 2010), allene (Vanuzzo et al. 2022), methylacetylene (Mancini et al. 2021), alkynes (Mancini et al. 2020) in laboratory experiments by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at different collision energies complemented by electronic structure calculations of the stationary points along the minimum energy path and kinetics calculations. The aim is to determine the chemical behavior of N(2D) with aromatic species after the previous investigation with aliphatic molecules. In particular, we wish to establish whether the aromatic ring is preserved in this reaction and whether the N atom is incorporated in the ring of carbon atoms.

 

References

Balucani N. et al. J. Am. Chem. Soc. 122 4443 (2000A)

Balucani N. et al. J. Phys. Chem. A 104 5655 (2000B)

Balucani N. et al. J. Phys. Chem. A 105 2414 (2001)

Balucani N. et al.  J. Phys. Chem. A 110 817 (2006)

Balucani N. Int. J. Mol. Sci., 10 2304 (2009)

Balucani N. et al. J. Phys. Chem. A 113 11138 (2009)

Balucani N. et al. Faraday Discussions 147 189 (2010)

Balucani N. et al. J. Phys. Chem. A 116 10467 (2012)

Balucani N. Chem. Soc. Rev., 41 5473 (2012)

Balucani N.  In: The Early Evolution of the Atmospheres of Terrestrial Planets, edited by J.M. Trigo-

Rodriguez, F. Raulin, C. Muller and C. Nixon, Springer Series in Astrophysics and Space Science Proceedings, 35,  155 (2013)

Balucani N. et al. Mol. Phys. 113 2296 (2015)

Balucani N. et al. LNCS 10961 763 (2018)

Balucani N. et al.  . LNCS 11621 316 (2019)

Balucani N. et al. Faraday Discuss. 245 327 (2023)

Bautista M.A. Astrophys. J. 527 474 (1999)

Brown R., Lebreton, J. P., Waite, J. (eds.): Titan from Cassini-Huygens. Springer, Netherlands (2010)

Clark R. N. et al.  J. Geophys. Res., 115 E10005 (2010)

Dopita M. A. et al. Astrophys. J. 207 102 (1976)

Dutuit O. et al. Astrophys. J. Suppl. Ser. 204 20 (2013)

Ferland, G. J. et al. Astrophys. J. 332 141 (1988)

Ferland G. J. et al. Astrophys. J. 757 79 (2012)

Homayoon Z. et al. J. Phys. Chem. Lett. 5 3508 (2014)

Hörst S. M. J. Geophys. Res.: Planets, 122 432 (2017)

Imanaka H. & Smith M.A. PNAS 107 12423 (2010)

Israel G. et al. Nature 438 796 (2005)

Lai, J.C.-Y. et al. Astron. J. 154 1 (2017)

Lavvas P. et al. Icarus 213 233 (2011)

Loison J. C. et al. Icarus 329 55 (2019)

Mancini L. et al. LNCS 12251 717 (2020)

Mancini L. et al. J. Phys. Chem A, 125 8846 (2021)

Mancini L. et al. J. Phys. Chem A, submitted (2024)

Raghuram S. et al. A&A 635 A108 (2020)

Rosi M. et al. LNCS 12251 744 (2020)

Rosi M. et al. LNCS 12953 620 (2021)

Vanuzzo G. et al. ACS Earth and Space Chemistry 6 2305 (2022)

Vuitton V. et al. Astrophys J. 647 L175–L178 (2006)

Vuitton V.,  et al. J. Geophys. Res. 113 E05007 (2008)

Vuitton V. et al. Chemistry of Titan's atmosphere. In: Mueller-Wodarg I, Griffith C, Lellouch E, Cravens T (eds.) Titan: Surface, Atmosphere and Magnetosphere, Cambridge University Press (2013)

How to cite: Rosi, M., Balucani, N., Caracciolo, A., Casavecchia, P., Faginas-Lagoi, N., Mancini, L., Skouteris, D., and Vanuzzo, G.: A joint computational and experimental study of the reactions between N(2D) and simple aromatic hydrocarbons , Europlanet Science Congress 2024, Berlin, Germany, 8–13 Sep 2024, EPSC2024-1013, https://doi.org/10.5194/epsc2024-1013, 2024.