ICG2022-341
https://doi.org/10.5194/icg2022-341
10th International Conference on Geomorphology
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Vulnerabilities in Post Yaas Environment and Probable Mitigation Strategies: Case Studies from Selected Sites, Sundarban, India

Karabi Das1 and Kanailal Das2
Karabi Das and Kanailal Das
  • 1University of Calcutta, Dr. Kanailal Bhattacharyya College, Geography, India (karabidas139@yahoo.in)
  • 2Parameswar Mahavidyalaya, West Bengal, India

Abstract: Vulnerability not only establishes the relationships people have with their environment but also links the social forces and institutions and the cultural values that sustain them. Physiographically, a deltaic plain, the Sundarban region is a dynamic ecosystem which frequently witnesses physical and social vulnerability brought about by natural hazards like tropical cyclones resulting in saltwater flooding. The Bay of Bengal basin records the highest number of tropical cyclones globally. About 8 storms with sustained wind speeds more than 63 km/hr form in the Bay of Bengal, of which, 2 become tropical cyclones. Cyclone Yaas was identified as a very severe cyclonic storm, originally formed as a tropical disturbance identified by the India Meteorological Department (IMD) on 23rd May 2021. Yaas made it’s landfall at Dhamra of Orissa state of India, on 26th May 2021, coinciding with spring tide. Coastal flooding was reported from Maipith, Bhubaneswari village panchayats along the rivers Matla, Thakuran and Nimania of Kultali community development block, Dhaspara, Sumatinagar, Kastala, Kochuberia, Mahishamari, Muriganga, Shilpara village panchayats of Sagar community development block, Amrabati, Lakshmipur, Fraserganj of Namkhana community development block, Gobardhanpur, Mridangabhanga, Krishnadaspur, East Chintamanipur, Kumarpur of Patharpratima community development block. Within the last 7 years, capacity building in the form of concrete houses under Indira Awas Yojana, cyclone shelters, metalled roads has increased. However, in the time of disasters even the settled portions get submerged in water as the settled portions are located at a lower height than the high water level. The local demand of concrete embankments is debatable and in some places the use of brick pitching, brick block pitching, porcupine mesh and Aila bandh have not been successful in preventing breaching and consequent saltwater inundation. Vulnerability is severe in case of Basanti, Gosaba, Kultali, Namkhana, Patharpratima community development blocks and high in case of Kakdwip, Sagar and Hingalganj community development blocks (Sahana et al, 2019). This paper takes all these phenomena into account and provides certain probable mitigation strategies which include the mapping of erosion accretion sites by comparative analyses of toposheets and satellite images, site specific mangrove aforestation, improved construction of embankments following expert and local opinions, revival of the decayed creeks to prevent waterlogging at times of disaster and rehabilitation of people from sites of continuous erosion to community shelters located at elevated areas alongwith tidal river management as practiced in Bangladesh where the rivers are temporarily allowed their spill areas.

 

 

How to cite: Das, K. and Das, K.: Vulnerabilities in Post Yaas Environment and Probable Mitigation Strategies: Case Studies from Selected Sites, Sundarban, India, 10th International Conference on Geomorphology, Coimbra, Portugal, 12–16 Sep 2022, ICG2022-341, https://doi.org/10.5194/icg2022-341, 2022.