Imaging the 3D Ionosphere by Global-Scale Tomography
- 1Department of Navigation and Positioning, Finnish Geospatial Research Institute (FGI), National Land Survey of Finland (NLS), Kirkkonummi, Finland
- 2Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR), Kalkhorstweg 53, 17235 Neustrelitz, Germany
High-resolution 3D ionosphere modelling is crucial to monitor and understand space weather. Prol et al. (2021) is one of the most recent developments in advanced global-scale tomography that can represent the ionospheric electron density in a relatively high spatial and temporal resolution. The study was applied to the March 17, 2015 geomagnetic storm, showing that global-scale tomography could be useful to reproduce the system dynamics during a severe geomagnetic storm. Our results show good agreement with several ground- and space-based measurements of the ionosphere. The dataset used as reference is based on electron density observations from worldwide ionosondes, Millstone Hill incoherent scatter radar and in-situ measurements from the DMSP, GRACE and SWARM missions. The obtained results presented more accurate electron density profiles when compared to the Neustrelitz Electron Density Model, which is the model used as background, and physics-based thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM). Here we will present the main results in Prol et al. (2021), as well as provide guidelines and recommendations for future improvements in the development of 3D ionospheric models.
Reference:
Prol, F. S., Kodikara, T., Hoque, M. M., & Borries, C. (2021). Global-scale ionospheric tomography during the March 17, 2015 geomagnetic storm. Space Weather, 19, e2021SW002889. https://doi.org/10.1029/2021SW002889
How to cite: Prol, F. S., Hoque, M. M., Kodikara, T., and Borries, C.: Imaging the 3D Ionosphere by Global-Scale Tomography, 2nd Symposium of IAG Commission 4 “Positioning and Applications”, Potsdam, Germany, 5–8 Sep 2022, iag-comm4-2022-3, https://doi.org/10.5194/iag-comm4-2022-3, 2022.