Oral Programme HS3.1
HS3.1 Hydroinformatics: computational intelligence and systems analysis |
Convener: Robert J. Abrahart | Co-Conveners: Elena Toth , Dimitri Solomatine , Linda See |
Oral Programme
/ Fri, 27 Apr, 08:30–12:00
/ Room 34
Poster Programme
/ Attendance Fri, 27 Apr, 13:30–15:00
/ Hall A
|
Friday, 27 April 2012 Room 34 Chairperson: Linda See |
|
08:30–08:45 |
EGU2012-1713
A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems P. Reed, D. Hadka, J. Herman, J. Kasprzyk, and J. Kollat |
08:45–09:00 |
EGU2012-5380
Modelling a model?!! Prediction of observed and calculated daily pan evaporation in New Mexico, U.S.A. D.J. Beriro, R.J. Abrahart, and C.P. Nathanail |
09:00–09:15 |
EGU2012-6447
RoCaSCA: A contour tracing grid-based algorithm to identify similarity regions and clusters in spatial geographical data P. Hazenberg, P. J. J. F. Torfs, H. Leijnse, and R. Uijlenhoet |
09:15–09:30 |
EGU2012-5826
| presentation
Automatic identification and placement of measurement stations for hydrological discharge simulations at basin scale P.R. Grassi, A. Ceppi, F. Cancarè, G. Ravazzani, M. Mancini, and D. Sciuto |
09:30–09:45 |
EGU2012-6562
Hybrid Modelling Approach to Prairie hydrology: Fusing Data-driven and Process-based Hydrological Models B. Mekonnen, A. Nazemi, A. Elshorbagy, K. Mazurek, and G. Putz |
09:45–10:00 |
EGU2012-6683
Forward Greedy ANN input selection in a stacked framework with Adaboost.RT - A streamflow forecasting case study exploiting radar rainfall estimates D. Brochero, F. Anctil, and C. Gagné |
COFFEE BREAK
|
|
10:30–10:45 |
EGU2012-10560
Uncertainty quantification of rainfall runoff predictions using Gaussian process models N. Schütze and M. Brettschneider |
10:45–11:00 |
EGU2012-6787
| presentation
Reformulated Neural Network (ReNN): a New Alternative for Data-driven Modelling in Hydrology and Water Resources Engineering S. Razavi, B. Tolson, D. Burn, and F. Seglenieks |
11:00–11:15 |
EGU2012-11688
Directly assessing uncertainty in designing the optimal operation of water resources systems by batch mode reinforcement learning S. Biizzi, A. Castelletti, and F. Pianosi |
11:15–11:30 |
EGU2012-11998
Flood quantile estimation at ungauged sites by Bayesian networks L. Mediero, D. Santillán, and L. Garrote |
11:30–11:45 |
EGU2012-10329
Higher dimensionality of hydrologic model parameters need not imply higher complexity or prediction uncertainty L. Arkesteijn and S. Pande |
11:45–12:00 |
EGU2012-6211
Experiments with models committees for flow forecasting J. Ye, N. Kayastha, S.J. van Andel, F. Fenicia, and D.P. Solomatine |