Orals

TS5.1

The study of active faults and deformation of the Earth's surface has made, and continues to make, significant contributions to our understanding of earthquakes and the assessment of seismic related hazard.
Active faulting may form and deform the Earth's surface so that records are documented in young sediments and in the landscape. Field studies of recent earthquake ruptures help not only constraining earthquake source parameters but also the identification of previously unknown active structures. The insights gleaned from recent earthquakes can be applied to study past earthquakes. Paleoseismology and related disciplines such as paleogeodesy and paleotsunami investigations still are the primary tools to establish earthquake records that are long enough to determine recurrence intervals and long-term deformation rates for active faults. Multidisciplinary data sets accumulated over the years have brought unprecedented constraints on the size and timing of past earthquakes, and allow deciphering shorter-term variations in fault slip rates or seismic activity rates, as well as the interaction of single faults within fault systems. Based on the this rich, but very heterogeneous knowledge of seismogenic faults, a variety of approaches have been developed to tranfer earthquake-fault geology into fault models suitable for probabilistic SHA. This session thus aims at linking field geologists, crustal deformation modellers, fault modellers, and seismic hazard practitioners.

In this session, we welcome contributions describing and critically discussing different approaches to study active faults. We are particularly interested in studies applying new and innovative methodological or multidisciplinary approaches. We hope to assemble a broad program bringing together studies dealing with on-land, lake or offshore environments, and applying a variety of methods such as traditional paleoseismic trenching, high-resolution coring, geophysical imaging, tectonic geomorphology, and remote sensing, as well as the application of earthquake geology in seismic hazard assessments. In addition, we encourage contributors describing how to translate fault data or catalogue data into fault models for SHA , and how to account for faults or catalogue issues.

Share:
Co-organized as GM4.5/NH4.16/SM3.10
Convener: Esther Hintersberger | Co-conveners: Romain Le Roux-Mallouf, Silke Mechernich, Oona Scotti
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2

Thursday, 11 April 2019 | Room K2

Chairperson: Esther Hintersberger, Oona Scotti
08:30–08:45 |
EGU2019-10019
Andrée Blais-Stevens, John J. Clague, Janice Brahney, Panya Lipovksy, Peter J. Haeussler, and Brian Menounos
08:45–09:00 |
EGU2019-7006
Katharina Müller, Jutta Winsemann, Ulrich Polom, Jan Igel, Sumiko Tsukamoto, Holger Steffen, Thomas Spies, Thomas Lege, Manfred Frechen, and Christian Brandes
09:00–09:15 |
EGU2019-16418
Magali Riesner, Laurent Bollinger, Judith Hubbard, Cyrielle Guérin, Amaury Vallage, Marthe Lefevre, Chanda Basnet, Thakur Prasad Kandel, Soma Nath Sapkota, Rafael Almeida, Kyle Bradley, and Paul Tapponnier
09:15–09:30 |
EGU2019-342
Guy Salomon, Alastair Sloan, Victoria Stevens, Richard Kahle, Beth Kahle, and Julian Smit
09:30–09:45 |
EGU2019-4197
Yufang Rong
09:45–10:00 |
EGU2019-15045
Zoe Mildon, Joanna Faure Walker, Gerald Roberts, and Shinji Toda
10:00–10:15 |
EGU2019-16195
Thomas Chartier, Oona Scotti, Keith Richards-Dinger, James Dieterich, and Hélène Lyon-Caen