Weathering, tectonics, gravitational and volcanic processes can transform the regular sediment delivery from unstable slopes in catastrophic landslides. Mass spreading and mass wasting processes can potentially evolve in rapid landslides are among the most dangerous natural hazards that threaten people and infrastructures, directly or through secondary events like tsunamis.

Documentation and monitoring of these phenomena requires the adoption of a variety of methods. The difficulties in detecting their initiation and propagation have progressively prompted research into a wide variety of monitoring technologies. Nowadays, the combination of distributed sensor networks and remote sensing techniques represents a unique opportunity to gather direct observations. A growing number of scientists with diverse backgrounds are dealing with the monitoring of processes ranging from volcano flak deformations to large debris flows and lahars. However, there is a need of improving quality and quantity of both documentation procedures and instrumental observations that would provide knowledge for more accurate hazard assessment, land-use planning and design of mitigation measures, including early warning systems. Successful strategies for hazard assessment and risk reduction would imply integrated methodology for instability detection, modeling and forecasting. Nevertheless, only few studies exist to date in which numerical modelling integrate geological, geophysical, geodetic studies with the aim of understanding and managing of terrestrial and subaqueous volcano slope instability.

Scientists working in the fields of hazard mapping, modelling, monitoring and early warning are invited to present their recent advancements in research and feedback from practitioners and decision makers. We encourage multidisciplinary contributions that integrate field-based on-shore and submarine studies (geological, geochemical), geomorphological mapping and account collection, with advanced techniques, as remote sensing data analysis, geophysical investigations, ground-based monitoring systems, and numerical and analogical modelling of volcano spreading, slope stability and debris flows.

Co-organized as GI4.11/GM7.8/GMPV7.3/SSS13.16
Convener: Velio Coviello (deceased) | Co-conveners: Marcel Hürlimann, Alessandro Bonforte, Federico Di Traglia, Odin Marc, Patrick Meunier, Sebastian von Specht
| Thu, 11 Apr, 08:30–10:15
Room M2
| Attendance Thu, 11 Apr, 10:45–12:30
Hall X3

Attendance time: Thursday, 11 April 2019, 10:45–12:30 | Hall X3

Chairperson: Marcel Hürlimann
X3.167 |
Mio Kasai and Takashi Yamada
X3.168 |
Lorenzo Marchi, Velio Coviello, Francesco Comiti, Stefano Crema, Marco Cavalli, and Pierpaolo Macconi
X3.169 |
Jacob Hirschberg, Brian McArdell, Georgina L. Bennett, Alexandre Badoux, and Peter Molnar
X3.170 |
Andreas Schimmel and Johannes Hübl
X3.171 |
Léna Cauchie, Anne-Sophie Mreyen, Philippe Cerfontaine, Mihai Micu, and Hans-Balder Havenith
X3.172 |
Salvatore Alparone, Graziella Barberi, Giuseppe Di Grazia, Ferruccio Ferrari, Elisabetta Giampiccolo, Vincenza Maiolino, Antonino Mostaccio, Carla Musumeci, Antonio Scaltrito, Luciano Scarfì, Tiziana Tuvè, and Andrea Ursino
X3.173 |
Sylvia Stegmann, Shynkarenko Anastasiia, Steffen Hammerschmidt, Katrina Kremer, Flavio Anselmetti, Donat Fäh, and Achim Kopf
X3.175 |
Yohei Arata, Chris Massey, Brenda Rosser, and Jon Carey
X3.176 |
Recent dyke intrusion and flank dynamics at Etna imaged by integrated DInSAR and GNSS observation
Alessandro Bonforte, Francesco Guglielmino, and Giuseppe Puglisi
X3.177 |
Filippo Greco, Alessandro Bonforte, Daniele Carbone, and Alfio Alex Messina
X3.178 |
Lauren Schaefer, Federico Di Traglia, Estelle Chaussard, Zhong Lu, Teresa Nolesini, and Nicola Casagli
X3.179 |
| Highlight
Max Wilkinson, Fabian Wadsworth, Alessandro Bonforte, Gerald Roberts, Daniele Andronico, Richard Jones, and Jenny Schauroth
X3.180 |
Sungwook Hong, Jungrack Kim, Alessandro Bonforte, and Federico Di Traglia
X3.183 |
Vera Kidyaeva, Inna Krylenko, Dmitry Petrakov, Sergey Chernomorets, Ekaterina Kornilova, Markus Stoffel, and Christoph Graf