Geomaterials in construction: resources, properties, performance, environmental interactions, and decay
Co-organized as GI4.9
Convener: Richard Prikryl | Co-conveners: Magdalini Theodoridou, Ákos Török
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
Room 0.94
| Attendance Thu, 11 Apr, 10:45–12:30
Hall X1

Construction materials (natural stone, aggregates, bricks, cement, lime, clay, etc.) form a wide and heterogeneous group (both from the genetic and technological point of view), which deserves attention from the scientific community due to their long-term use, importance for the society and sensitivity to the environment. Most of the geomaterials have been also used in important monuments of the World Cultural Heritage. However, our knowledge of many aspects of these materials is still rather limited. This session would like to focus on thorough discussions of the following topics:
• characterisation of traditional raw materials and their products, such as natural stone, crushed stone, sands and gravels, clay, inorganic binders (lime, natural cements, hydraulic lime, and gypsum), earth and adobe;
• recovery of traditional and historic knowledge of their processing and use;
• assessment of stability (durability) problems associated to long-term exposure of these materials to the anthroposphere;
• optimization of traditional construction materials (surface treatments, use of organic or inorganic additives, etc.);
• study of interactions and compatibility between traditional construction materials and modern restoration products
• availability of traditional materials in modern society, including comparative studies between small-scale production of materials (e.g. natural cement) and large-scale industrial processing;
• use of local materials as a part of cultural and technological heritage;
• technological properties and their testing (including relevance of individual tests, limits of methodologies, development of new methods);
• on site and laboratory standardized (ASTM, EN, etc.) and non-standardized testing techniques and their limitations for material characterization;
• monitoring and characterization of weathering features;
• monitoring of temperatures, moisture and salts, particularly under the viewpoint of climate change;
• geological evaluation of geomaterials deposits, i.e. different prospecting and exploration approaches applied to specific features of these materials in different geoenvironments, such as geostatistical evaluation, relevance of reserves and resources classification schemes;
• compositional (mineralogical, chemical, etc.) and genetic aspects that influence processing and final use of geomaterials and their quality;
• alternative use for waste materials from the exploitation and processing of geomaterials;
• durability of geomaterials once being placed in buildings or other structures.