SSS10.4 | PICO
Biogeosciences and wine: the management and the environmental processes that regulate the terroir effect in space and time
Convener: Simone Priori | Co-conveners: Antonello Bonfante, Sandro Conticelli, Emmanuelle Vaudour, Silvia Winter
PICOs
| Fri, 12 Apr, 10:45–12:30
 
PICO spot 3

Viticulture is one of the most important agricultural sectors of Europe with an average annual production of 168 million hectoliters (54% of global consumption). The concept of “Terroir” links the quality and typicity of wine to the territory, and, in particular, to specific environmental characteristics that affect the plant response (e.g. climate, geology, pedology). The environmental factors that drive the terroir effect vary in space and time, as well as soil and crop management.
Understanding the spatial variability of some environmental factors (e.g. soil) is very important to manage and preserve terroirs and face the current and future issue of climate change. In this sense, it is important to stress that in the last decade, the study of terroir has shifted from a largely descriptive regional science to a more applied, technical research field, including: sensors for mapping and monitoring environmental variables, remote sensing and drones for crop monitoring, forecast models, use of microelements and isotopes for wine traceability, metagenome approach to study the biogeochemical cycles of nutrients.
Moreover, public awareness for ecosystem functioning has led to more quantitative approaches in evidencing the relations between management and the ecosystem services of vineyard agroecosystems. Agroecology approaches in vineyard, like the use of cover crops, straw mulching, and organic amendments, are developing to improve biodiversity, organic matter, soil water and nutrient retention, preservation from soil erosion.
On those bases, the session will address the several aspects of viticultural terroirs:
1) quantifying and spatial modelling of terroir components that influence plant growth, fruit composition and quality, mostly examining climate-soil-water relationships; 2) terroir concept resilience to climate change; 3) wine traceability and zoning based on microelements and isotopes; 4) interaction between vineyard management practices and effects on soil and water quality as well as biodiversity and related ecosystem services.