Climate Variability and Prediction in High Latitudes
Co-organized as AS4.12/CR1.14/OS1.29
Convener: Torben Koenigk | Co-conveners: Yongqi Gao (deceased), Helge Goessling, Neven-Stjepan Fuckar
| Mon, 08 Apr, 08:30–12:30
Room 0.49
| Attendance Mon, 08 Apr, 14:00–15:45
Hall X5

The Arctic sea ice and high latitude atmosphere and oceans have experienced significant changes over the modern observational era. The polar climate is crucial for the Earth’s energy and water budget, and its variability and change have direct socio-economic and ecological impacts. Thus, understanding high-latitude variability and improving predictions of high latitude climate is highly important for society. Predictability studies indicate that decadal to multi-decadal variations in the oceans and sub-seasonal to multi-year sea ice variations are the largest sources of predictability in high latitudes. However, dynamical model predictions are not yet in the position to provide us with accurate predictions of the polar climate. Main reasons for this are the lack of observations in high latitudes, insufficient initialization methods and shortcomings of climate models in representing some of the important climate processes in high latitudes.
This session aims for a better understanding and better representation of the mechanisms that control high latitude climate variability and predictability in both hemispheres at sub-seasonal to multi-decadal time-scales in past, recent and future climates. Further, the session aims to discuss ongoing efforts to improve climate predictions at high latitudes at various time scales (as e.g. usage of additional observations for initialization, improved initialization methods, impact of higher resolution, improved parameterizations) and potential teleconnections of high latitude climate with lower latitude climate. We also aim to link polar climate variability and predictions to potential ecologocal and socio-economic impacts and encourage submissions on this topic.
This session offers the possibility to present results from the ongoing projects and research efforts on the topic of high-latitude climate variability and prediction, including, but not limited to Year of Polar Prediction (YOPP), and the ARCPATH-project (Arctic Climate Predictions - Pathways to Resilient, Sustainable Societies).