SM1.3

Recent advances in rotational seismology have led to new applications in various geophysical disciplines such as earthquake physics, broadband seismology, seismic exploration, strong ground motion, and earthquake engineering. The progress is mainly driven by the development of new, sensitive rotational sensors that, when combined with classical seismometers and strain sensors, enable the complete observation of seismic ground motion.

The instrumental development overlap with considerable improvements in optical and atom interferometry for inertial rotation and gravity sensing which has led to a variety of improved sensor concepts over the last two decades. Thus, advanced instrumentation enables applications in seismology, geodesy, and fundamental physics.

We invite all contributions on theoretical advances to the seismic wavefield gradient, on novel measurement techniques, and on all aspects of applications in seismic, seismology, geodesy, and fundamental physics.

Share:
Co-organized as G6.2
Convener: Stefanie Donner | Co-conveners: André Gebauer, Christian Schubert, David Sollberger
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room D2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
Recent advances in rotational seismology have led to new applications in various geophysical disciplines such as earthquake physics, broadband seismology, seismic exploration, strong ground motion, and earthquake engineering. The progress is mainly driven by the development of new, sensitive rotational sensors that, when combined with classical seismometers and strain sensors, enable the complete observation of seismic ground motion.

The instrumental development overlap with considerable improvements in optical and atom interferometry for inertial rotation and gravity sensing which has led to a variety of improved sensor concepts over the last two decades. Thus, advanced instrumentation enables applications in seismology, geodesy, and fundamental physics.

We invite all contributions on theoretical advances to the seismic wavefield gradient, on novel measurement techniques, and on all aspects of applications in seismic, seismology, geodesy, and fundamental physics.