GD7.1
Long-term rheology , heat budget and dynamic permeability of deforming and reacting rocks: from laboratory to geological scales
Co-organized as EMRP1.61/GMPV7.8/TS3.6
Convener: Yury Podladchikov | Co-conveners: Shun-ichiro Karato, Magdalena Scheck-Wenderoth, Lucie Tajčmanová
Orals
| Fri, 12 Apr, 10:45–12:30, 14:00–15:45, 16:15–18:00
 
Room D2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2

The goal of this session is to reconcile short-time/small-scale and long-time/large-scale observations, including geodynamic processes such as subduction, collision, rifting or mantle lithosphere interactions. Despite the remarkable advances in experimental rock mechanics, the implications of rock-mechanics data for large temporal and spatial scale tectonic processes are still not straightforward, since the latter are strongly controlled by local lithological stratification of the lithosphere, its thermal structure, fluid content, tectonic heritage, metamorphic reactions and deformation rates.

Mineral reactions have mechanical effects that may result in the development of pressure variations and thus are critical for interpreting microstructural and mineral composition observations. Such effects may fundamentally influence element transport properties and rheological behavior.
Here, we encourage presentations focused on the interplay between metamorphic processes and deformation on all scales, on the rheological behavior of crustal and mantle rocks and time scales of metamorphic reactions in order to discuss
(1) how and when up to GPa-level differential stress and pressure variations can be built and maintained at geological timescales and modelling of such systems,
(2) deviations from lithostatic pressure during metamorphism: fact or fiction?,
(3) the impact of deviations from lithostatic pressure on geodynamic reconstructions.
(4) the effect of porous fluid and partial melting on the long-term strength.
We therefore invite the researchers from different domains (rock mechanics, petrographic observations, geodynamic and thermo-mechanical modelling) to share their views on the way forward for improving our knowledge of the long-term rheology and chemo-thermo-mechanical behavior of the lithosphere and mantle.