SIT4ME project: Up-scaling seismic methods for mineral exploration in the Zinkgruvan mining area, Sweden
- 1Department of Earth Sciences, Uppsala University, Sweden
- 2Technische Universität Bergakademie Freiberg, Germany
- 3Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), Spain
- 4Department of Geology, University of Salamanca, Spain
- 5Zinkgruvan Mining AB, Sweden
- 6Lundin Mining Corporation, Canada
- 7DMT GmbH & Co, Germany
Mineral resources are used in large quantities than ever before because they are fundamental to our modern society. To this front and facing an up-scaling challenge, the EIT Raw-Materials funded project SIT4ME (Seismic Imaging Techniques for Mineral Exploration) was launched involving several European institutions. As part of the project, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area at the Bergslagen mineral district of Sweden, which hosts one of the largest volcanic-hosted massive sulphide (VMS) deposits in the country.
In November 2018, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area, in a joint collaborative approach among Swedish, Spanish and German partners. A combination of sparse 3D grid and dense 2D profiles in an area of approximately 6 km2 was acquired using a 32t seismic vibrator (10-150 Hz) of TU Bergakademie Freiberg, enabling reasonable pseudo-3D sub-surface illumination. For the data acquisition, a total of approximately 1300 receiver positions (10-20 m apart), using different recorders, and 950 source positions were surveyed. All receivers were active during the data acquisition allowing a combination of 2D and semi-3D data to be obtained for various imaging and comparative studies. The main objective of the study, apart from its commercial-realization approach, was also to provide information useful for deep-targeting and structural imaging in this complex geological setting. The main massive-sulphide bearing horizon, Zinkgruvan formation, is strongly reflective as correlated with the existing boreholes in the mine. Careful analysis of the seismic sections suggests a dominant northeast-dipping structure, consistent with the general plunge of the main Zinkgruvan fold that has been suggested in the area.
Acknowledgements: EIT-RawMaterials is gratefully thanked for funding this up-scaling project 17024.
How to cite: Gil, A., Malehmir, A., Buske, S., Alcalde, J., Ayarza, P., Martínez, Y., Lindskog, L., Spicer, B., Carbonell, R., Orlowsky, D., Penney, M., and Hagerud, A.: SIT4ME project: Up-scaling seismic methods for mineral exploration in the Zinkgruvan mining area, Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10911, https://doi.org/10.5194/egusphere-egu2020-10911, 2020.