EGU2020-11209, updated on 15 Feb 2024
https://doi.org/10.5194/egusphere-egu2020-11209
EGU General Assembly 2020
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Organic matter additions to soil and effects on microbially mediated carbon cycling

Rachel hasler1, Mark pawlett1, Jim harris1, Helen bostock2, and Marc redmile-gordon2
Rachel hasler et al.
  • 1CRANFIELD UNIVERSITY, SCHOOL OF WATER, ENERGY AND ENVIRONMENT, CENTRE FOR ENVIRONMENTAL AND AGRICULTURAL INFORMATICS, United Kingdom of Great Britain and Northern Ireland (r.hasler@cranfield.ac.uk)
  • 2The Royal Horticultural Society (RHS), RHS Wisley, UK

The type of soil organic amendment selected can have profound implications for carbon cycling processes in soils. Understanding the link between this choice and its effect on the soil microbiome will improve our understanding of the capacity of these materials to improve carbon sequestration and cycling dynamics. Understanding and facilitating the lifestyle strategies of microorganisms processing organic matter is essential to improving our understanding of the terrestrial carbon cycle. This research focuses on utilising organic amendments to alter the indigenous soil microbial community composition and function to improve the capacity of the soil to cycle and store carbon in horticultural soils.  The effects of annual application of various organic fertilisers (peat, bracken, bark, horse manure, garden compost) in a long-term (10year) field experiment were explored. Sampling was completed pre and post application of organic matter within one season (following 10 years of applications) to identify which organic amendment was more effective in producing benefits to plants through improved soil organic matter and which amendments provide the greatest legacy effect on carbon cycling. The response of the soil microbial community composition (phospholipid fatty acid analysis) and carbon functional cycling dynamics (respiration using MicroResp™) were determined with a view to improving our understanding of the interaction between the materials applied and microbial processes. PCA of the MicroResp™ data identified that all treatments had a different functional profile compared to the control[PM1]  with peat being significantly different from all other treatments. Horse manure and bark differed significantly within a single growing season; prior and post organic matter addition in spring 2019.  Microbial biomass measurements for garden compost and horse manure were significantly higher following organic matter addition compared to all other treatments and the control[PM2] .  All treatments had a significant effect [PM3] on hot water extractable carbon and total carbon. Peat had a significantly different effect[PM4] , when compared to other treatments, on the soil PLFA profile and bark application significantly increased [PM5] the neutral lipid (NLFA) biomarker 16:1ω5.  Bark and horse manure application both significantly increased PLFA fungal biomarker 18:2ω6,9. No significant differences were found between the fungal/bacterial ratios of the organic matter additions prior to being added to the soil. These findings show that altering the resources available to the soil microbial community has a significant impact on soil microbial community composition and microbially mediated carbon cycling functionality. Increasing our understanding of how soil functions are altered by land management decisions will enable better informed predictions of the long-term benefits of organic matter applications on carbon sequestration and cycling dynamics.

How to cite: hasler, R., pawlett, M., harris, J., bostock, H., and redmile-gordon, M.: Organic matter additions to soil and effects on microbially mediated carbon cycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11209, https://doi.org/10.5194/egusphere-egu2020-11209, 2020.

Displays

Display file