EGU2020-11513
https://doi.org/10.5194/egusphere-egu2020-11513
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

The mutual impact of weather regimes and the stratospheric circulation on European surface weather

Christian M. Grams1, Remo Beerli2, Dominik Büeler1, Daniela I. V. Domeisen3, Lukas Papritz3, and Heini Wernli3
Christian M. Grams et al.
  • 1Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-TRO), Department Troposphere Research, Karlsruhe, Germany (grams@kit.edu)
  • 2Axpo Solution AG, Baden, Switzerland
  • 3Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

Extreme states of the winter stratosphere, such as sudden stratospheric warmings (SSWs) or an extremely strong stratospheric polar vortex (SPV), can affect surface weather over the North-Atlantic European region on subseasonal time scales. Here we investigate the occurrence of Atlantic-European weather regimes during different stratospheric conditions in winter and their link to large-scale weather events in European sub-regions. We further elucidate if the large-scale flow regime in the North Atlantic at SSW onset determines the subsequent downward impact.

Anomalous stratospheric conditions modulate the occurrence of weather regimes which project strongly onto the NAO and the likelihood of their associated weather events. In contrast weather regimes which do not project strongly onto the NAO are not affected by anomalous stratospheric conditions. These regimes provide pathways to unexpected weather events in extreme stratospheric polar vortex states. For example, Greenland blocking (GL) and the Atlantic Trough (AT) regime are the most frequent large-scale flow patterns following SSWs. While in Central Europe GL provides a pathway to cold and calm weather, AT provides a pathway to warm and windy weather. The latter weather conditions are usually not expected after an SSW. Furthermore, we find that a blocking situation over western Europe and the North Sea (European Blocking) at the time of the SSW onset favours the GL response and associated cold conditions over Europe. In contrast, an AT response and mild conditions are more likely if GL occurs already at SSW onset. An assessment of forecast performance in ECMWF extended-range reforecasts suggests that the model tends to forecast too cold conditions following weak SPV states.

In summary, weather regimes and their response to anomalous SPV states importantly modulate the stratospheric impact on European surface weather. In particular the tropospheric impact of SSW events critically depends on the tropospheric state during the onset of the SSW. We conclude that a correct representation of weather regime life cycles in numerical models could provide crucial guidance for subseasonal prediction.

 

References:

Beerli, R., and C. M. Grams, 2019: Stratospheric modulation of the large-scale circulation in the Atlantic–European region and its implications for surface weather events. Q.J.R. Meteorol. Soc., 145, 3732–3750, doi:10.1002/qj.3653.

Domeisen, D. I. V., C. M. Grams, and L. Papritz, 2020: The role of North Atlantic-European weather regimes in the surface impact of sudden stratospheric warming events. Weather and Climate Dynamics Discussions, 1–24, doi:https://doi.org/10.5194/wcd-2019-16.

How to cite: Grams, C. M., Beerli, R., Büeler, D., Domeisen, D. I. V., Papritz, L., and Wernli, H.: The mutual impact of weather regimes and the stratospheric circulation on European surface weather, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11513, https://doi.org/10.5194/egusphere-egu2020-11513, 2020

Displays

Display file