EGU2020-12504
https://doi.org/10.5194/egusphere-egu2020-12504
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

C-dots as a novel silica-based fluorescent nanoparticle tracer to investigate plant hydraulics

Kanishka Singh1, Benjamin Hafner2, James Knighton3, M. Todd Walter4, and Taryn Bauerle2
Kanishka Singh et al.
  • 1Cornell University, Natural Resources, United States of America (ks983@cornell.edu)
  • 2Cornell University, School for Integrated Plant Sciences, United States of America
  • 3University of Maryland College Park, The National Socio-Environmental Synthesis Center, United States of America
  • 4Cornell University, Biological and Environmental Engineering, United States of America

Forest cover exerts a significant control on the partitioning of precipitation between evapotranspiration and surface runoff. Thus, understanding how plants take up and transpire water in forested catchments is essential to predict flooding potential and hydrologic cycling. A growing literature underscores the importance of integrating whole-plant hydraulics, including such processes as the spatial variability of root distribution and the temporally dynamic nature of root water uptake by depth in understanding the relationship between changes in vegetation and hydrology. The analysis of stable isotopes of water (18O and 2H) sourced from soils and plant tissue has enabled the estimation of tree root water uptake depths and water use strategies. Despite the general acceptance of stable water isotopic data to estimate plant hydraulic dynamics, this methodology imposes assumptions that may produce spurious results. For example, end member mixing analysis neglects time-delays during tree-water storage. Also, it is likely that hydraulic redistribution processes of plants, which transport water across soil depths and both into and out of plant tissue, modify δ18O and δ2H; the isotopic signature of a collected sample may thus reflect a history of transport and exposure to fractionating processes not accounted for in analysis. We tested the feasibility of C-dots, core-shell silica polyethylene-glycol coated fluorescent nano-particles (5.1 nm diameter) in 20 µmol/l solution with H2O labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum of 646 nm, emission maximum of 662 nm), as an alternative to stable water isotopes in the investigation of plant hydraulics. We examined the absorption and transport of C-dots through soil, as well as roots and aerial structures of Eastern hemlock (Tsuga canadensis), Eastern white pine (Pinus strobus), and white spruce (Picea glauca) saplings (n = 12 each) via an IVIS-200 luminescence in-situ imaging system. We compared the fluid mechanics, residence times and mixing schemes of C-dots with 2H-labeled water during transport within these plant species to establish the nanoparticles as a viable alternative through a split-root hydraulic redistribution experiment under moderate and severe drought conditions. We present a residence-time distribution to elucidate the mixing scheme of C-dot solution and calibration curves to aid future studies. This research is the premier assessment of this nanoparticle as an alternative tracer to stable water isotopes, and as such may yield insights for broader applications.

How to cite: Singh, K., Hafner, B., Knighton, J., Walter, M. T., and Bauerle, T.: C-dots as a novel silica-based fluorescent nanoparticle tracer to investigate plant hydraulics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12504, https://doi.org/10.5194/egusphere-egu2020-12504, 2020

This abstract will not be presented.