EGU2020-12806, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-12806
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Paleoenvironmental and paleoclimatic changes in the Japan Sea since the last glaciation

Xuefa Shi1,2, Jianjun Zou1,2, and Sergey Gorbarenko3
Xuefa Shi et al.
  • 1Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, MNR, Qingdao, China
  • 2Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 3V.I. Il’ichev Pacific Oceanological Institute, Fast Eastern Branch of RAS, Russia

The Japan Sea, one of the marginal seas of the North Pacific, communicates with adjacent seas through four shallow straits (<130 m) and the present environment in the Japan Sea is mainly forced by the Tsushima Warm Current (TWC), East Asia Monsoon (EAM) and seasonal sea ice. During the Quaternary, the pronounced effects of glacial eustatic sea level on the hydrography, ocean biogeochemistry and sediment depositions in the Japan Sea over glacial-interglacial cycles. However, the spatial heterogeneity of these forcings exerting on environment of the Japan Sea may results in contrasting response. On the basis of a suite of sediment cores collected during the China-Russia joint expedition in 2010, we investigate the sedimentary processes and paleoenvironment changes in the Japan Sea. We found enhanced extent of seasonal sea-ice coverage in the western Japan Sea, which is synchronous with the intensification of East Asian Winter Monsoon (EAWM) from 15ka to 8ka. During the early last deglaciation (17ka-15ka), perennial sea ice cover at investigated site occurs and thus inhibits the deepwater formation in the Japan Sea. Since 8 ka, increased deep ventilation and dampened sea ice coverage are closely related to enhanced EAWM and invasion of high-salinity TWC into the Japan Sea. In the southern Japan Sea, the sediment provenance is mainly derived from the Yangtze and old yellow rivers, while the terrigenous matter was mainly sourced from the Yangtze River after 7 ka, on the basis of elemental and radiogenic isotopic data (Sr and Nd) of fine-sized (<63 μm) sediments. Abrupt shifts in sediment provenance occurred at ~18 ka and ~7 ka and these time periods are synchronous with changes in surface hydrography and deep ventilation in the Ulleung Basin. In the central Japan Sea, eolian dust sourced from central Asia and Chinese Loess Plateau by westerly was delivered to the central Japan Sea. In addition, deep ventilation in the southern and central Japan Sea evidenced by redox-sensitive elements and ventilation-like radiolarian species suggest intensified ventilation since 8ka and during cold spells of the last deglaciation, which is closely related to the invasion of the Tsushima Warm Current into the Japan Sea. Our data suggest that sea level is a first-order factor in controlling the environment and sediment deposition in the Japan Sea at orbital timescales, while the East Asian Monsoon and Kuroshio Current play a secondary role. Note: This study was supported by the National Natural Science Foundation of China (Grants No. 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-03 &-04). 

How to cite: Shi, X., Zou, J., and Gorbarenko, S.: Paleoenvironmental and paleoclimatic changes in the Japan Sea since the last glaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12806, https://doi.org/10.5194/egusphere-egu2020-12806, 2020