EGU2020-13044
https://doi.org/10.5194/egusphere-egu2020-13044
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Satellite Microwave TC Warm-core Retrieval for a 4D-Var Vortex Initialization Using a Nonhydrostatic Axisymmetric Model with Convection Accounted for

Xiaolei Zou1 and Xiaoxu Tian2
Xiaolei Zou and Xiaoxu Tian
  • 1Nanjing University of Information Science and Technology, Institute of Meteorology, Nanjing, China (xzou@nuist.edu.cn)
  • 2Earth System Science Interdisciplinary Center, University of Maryland, USA.(xtian15@umd.edu)

A recently further refined hurricane warm core retrieval algorithm is applied to the NOAA-20 and S-NPP Advance Microwave Temperature Sounder (ATMS), the Advanced Microwave Sounding Unit-A (AMSU-A) and the Fengyun-3D (FY-3D) microwave temperature sounding instrument (MWTS) brightness temperature observations within and around Hurricanes and incorporated into A four-dimensional variational (4D-Var) vortex initialization (VI) system is developed for a nonhydrostatic axisymmetric numerical model with convection accounted for (the RE87 model). It is shown that the temporal evolution of the ATMS and AMSU-A derived maximum warm core temperature anomalies follow more closely with that of the minimum mean sea level pressure and slightly less closely with the maximum sustained wind, and the radii of the ATMS derived warm cores at 4 and 6 K compared favorably with the 34 kt and 50 kt wind radii during the entire life span of Hurricane Irma in 2017. The vertical extend of the warm core toward the lower levels increases with increasing intensity when Irma experiences a strong intensification due to an enhanced latent heat release associated with diabatic processes. The multi-polar-orbiting operational meteorological satellites can well capture the TC inner cores’ diurnal cycle with a maximum around midnight. A model fit to satellite microwave retrievals of tropical cyclone (TC) warm-core temperatures from the above mentioned three polar-orbiting satellites and and total precipitable water (TPW) Global Change Observation Mission  – Water Satellite 1 produced a significantly improved intensity forecast of Hurricane Florence (2018) and Typhoon Mangkhut (2018), with more realistic vertical structures of all model state variables (e.g., temperature, water vapor mixing ratio, liquid water content mixing ratio, tangential and radial wind components, and vertical velocity) are obtained when compared with a parallel run initialized simply by the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis.

How to cite: Zou, X. and Tian, X.: Satellite Microwave TC Warm-core Retrieval for a 4D-Var Vortex Initialization Using a Nonhydrostatic Axisymmetric Model with Convection Accounted for, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13044, https://doi.org/10.5194/egusphere-egu2020-13044, 2020

Displays

Display file