An experimental evaluation of impact force on a fiber bragg grating (FBG)-based device for debris flow warning
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China (sj-zhang@imde.ac.cn)
Conventional sensors for debris flow monitoring suffer from several drawbacks including low service life, low reliability in long-distance data transfer, and stability in severe weather conditions. Recently, fiber Bragg grating (FBG)-based sensors have been developed to monitor debris flows. However, they can be easily damaged by the impact forces of boulders within debris flow. This paper presents a new FBG-based device to measure the strain induced by the impact force of debris flow with high reliability and effectiveness. The effects of the impact forces of debris flows have been investigated. Then, the relationship between the strain and the debris flow energy correlating with the damage to building structures has been established. It is shown that this new FBG-based device is capable of monitoring and warning about debris flows. The impact experiment results show that the peak value of dynamic strain on the fixed end of the new device is positively correlated with the external impact force. Using an impact force, we establish a relationship between the measured strain and the potential of a debris flow resulting in damage to structures was established. This follows the general rule that a larger measured strain corresponds to a higher level of debris flow. Using this relationship, we can quantify a dangerous level of debris flow using the monitored strain data. Our new device is capable of monitoring and warning about dangerous debris flows, allowing for more effective debris flow mitigation.
How to cite: Zhang, S.: An experimental evaluation of impact force on a fiber bragg grating (FBG)-based device for debris flow warning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-134, https://doi.org/10.5194/egusphere-egu2020-134, 2019