Modelling study on the formation of pockets of open cells in marine stratocumulus cloud during CLARIFY
- University of Manchester, MANCHESTER, United Kingdom of Great Britain and Northern Ireland (emma.simpson@manchester.ac.uk)
Due to the wide spread nature of marine stratocumulus cloud they have a significant impact on the Earth’s radiation budget. Such clouds are sensitive to the presence of aerosol, which can promote the break-up of a cloud deck into pockets of open cell convection (POC). The transition from a cloud deck to pockets of open cells changes the overall cloud albedo thus affecting the Earth’s radiation budget. The representation of stratocumulus cloud and the transition to POCs is poorly represented in current climate and weather models. This study aims to improve understanding of this process using extensive in-situ measurements made during the CLARIFY campaign of stratocumulus cloud decks, transition areas between overcast and open cell cloud structures as well as areas of POCs, to inform and compare to large-eddy simulations.
A variety of different aerosol situations occurred during CLARIFY, combinations of polluted/clean boundary layer and polluted/clean conditions above the cloud layer. Large-eddy simulations are conducted to investigate the sensitivity of clouds to changes in the observed aerosol conditions with a particular focus on whether or not the change in aerosol initiates cloud breakup.
The MetOffice NERC Cloud model (MONC) is used to preform the large-eddy simulations and employs the CASIM cloud microphysics scheme which includes activation of aerosol particles to cloud drops. Such a model set-up allows direct interaction between aerosols and clouds. Observations from CLARIFY are used to initialise and evaluate model simulations.
How to cite: Simpson, E. and Choularton, T.: Modelling study on the formation of pockets of open cells in marine stratocumulus cloud during CLARIFY, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16043, https://doi.org/10.5194/egusphere-egu2020-16043, 2020